Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Physiol ; 264(5 Pt 1): C1180-9, 1993 May.
Article in English | MEDLINE | ID: mdl-8498479

ABSTRACT

Chronic exercise training elicits positive adaptations in cardiac contractile function and ventricular dimension. The potential contribution of single myocyte morphological and functional adaptations to these global responses to training was determined in this study. Left ventricular cardiac myocytes were isolated from the hearts of sedentary control (Sed) or exercise-trained (TR) rats. Training elicited an approximately 5% increase in resting myocyte length (Sed, 121.0 +/- 2.0 vs. TR, 126.7 +/- 2.0 microns; P < 0.05), whereas resting sarcomere length and midpoint cell width were unaffected. These data suggest that longitudinal myocyte growth contributes to the training-induced increase in end-diastolic dimension. Single myocytes (28 degrees C) were stimulated at 0.067 and 0.2 Hz and shortening dynamics assessed at extracellular Ca2+ concentrations ([Ca2+]o) of 0.6, 1.1, and 2.0 mM. In both groups, maximal extent of myocyte shortening (ESmax) increased as [Ca2+]o increased and decreased as contraction frequency increased. TR myocytes were more strongly influenced by the effects of [Ca2+]o and frequency. At 0.067 Hz and 2.0 mM, ESmax was greater in TR than in Sed myocytes. The magnitude of this difference decreased as [Ca2+]o was reduced. At 0.2 Hz, ESmax was similar in Sed and TR myocytes at 2.0 mM [Ca2+]o. As [Ca2+]o was reduced, ESmax decreased more rapidly in TR than in Sed myocytes; at 0.6 mM, ESmax was greater in Sed than in TR myocytes. Our data indicate that chronic exercise influences cardiac contractile function at the single myocyte level. This study also provides evidence in support of the hypothesis that chronic exercise influences myocyte Ca2+ influx and efflux pathways.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Heart/physiology , Myocardial Contraction , Myocardium/cytology , Physical Conditioning, Animal , Analysis of Variance , Animals , Calcium/metabolism , Cells, Cultured , Cytosol/metabolism , Female , Heart Ventricles , Rats , Rats, Sprague-Dawley , Reference Values , Sarcomeres/physiology , Sarcomeres/ultrastructure
2.
Am J Physiol ; 262(4 Pt 1): C980-90, 1992 Apr.
Article in English | MEDLINE | ID: mdl-1533096

ABSTRACT

In myocardial hypertrophy secondary to renovascular hypertension, the rate of intracellular Ca2+ concentration decline during relaxation in paced left ventricular (LV) myocytes isolated from hypertensive (Hyp) rats is much slower compared with that from normotensive (Sham) rats. By use of a novel liquid-crystal television-based optical-digital processor capable of performing on-line real-time Fourier transformation and the striated pattern (similar to 1-dimensional diffraction grating) of cardiac muscle cells, sarcomere shortening and relaxation velocities were measured in single Hyp and Sham myocytes 18 h after isolation. There were no differences in resting sarcomere length, percent of maximal shortening, time to peak shortening, and average sarcomere shortening velocity between Sham and Hyp cardiac cells. In contrast, average sarcomere relaxation velocity and half-relaxation time were significantly prolonged in Hyp myocytes. Contractile differences between Sham and Hyp myocytes detected by the optical-digital processor are confirmed by an independent method of video tracking of whole cell length changes during excitation-contraction. Despite the fact that freshly isolated myocytes contract more rigorously than 18-h-old myocytes, the relaxation abnormality was still observed in freshly isolated Hyp myocytes, suggesting impaired relaxation is an intrinsic property of Hyp myocytes rather than changes brought about by short-term culture. We postulate that reduced sarcomere relaxation velocity is a direct consequence of impaired Ca2+ sequestration-extrusion during relaxation in Hyp myocytes and may be responsible for diastolic dysfunction in hypertensive hypertrophic myocardium at the cellular level.


Subject(s)
Heart/physiopathology , Hypertension, Renovascular/physiopathology , Myocardial Contraction , Myocardium/pathology , Animals , Cardiomegaly/etiology , Cardiomegaly/pathology , Hypertension, Renovascular/complications , Hypertension, Renovascular/pathology , Image Processing, Computer-Assisted , Male , Optics and Photonics , Rats , Rats, Inbred Strains , Sarcomeres/physiology , Television
SELECTION OF CITATIONS
SEARCH DETAIL
...