Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Lab Anim (NY) ; 52(12): 315-323, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37932470

ABSTRACT

Placental malaria vaccines (PMVs) are being developed to prevent severe sequelae of placental malaria (PM) in pregnant women and their offspring. The leading candidate vaccine antigen VAR2CSA mediates parasite binding to placental receptor chondroitin sulfate A (CSA). Despite promising results in small animal studies, recent human trials of the first two PMV candidates (PAMVAC and PRIMVAC) generated limited cross-reactivity and cross-inhibitory activity to heterologous parasites. Here we immunized Aotus nancymaae monkeys with three PMV candidates (PAMVAC, PRIMVAC and ID1-ID2a_M1010) adjuvanted with Alhydrogel, and exploited the model to investigate boosting of functional vaccine responses during PM episodes as well as with nanoparticle antigens. PMV candidates induced high levels of antigen-specific IgG with significant cross-reactivity across PMV antigens by enzyme-linked immunosorbent assay. Conversely, PMV antibodies recognized native VAR2CSA and blocked CSA adhesion of only homologous parasites and not of heterologous parasites. PM episodes did not significantly boost VAR2CSA antibody levels or serum functional activity; nanoparticle and monomer antigens alike boosted serum reactivity but not functional activities. Overall, PMV candidates induced functional antibodies with limited heterologous activity in Aotus monkeys, similar to responses reported in humans. The Aotus model appears suitable for preclinical downselection of PMV candidates and assessment of antibody boosting by PM episodes.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Humans , Female , Pregnancy , Placenta/parasitology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology , Plasmodium falciparum , Antigens, Protozoan , Antibodies, Protozoan , Malaria/prevention & control , Aotidae , Immunity
2.
Biochim Biophys Acta Biomembr ; 1864(10): 183980, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35654147

ABSTRACT

Plasmodium falciparum, a dangerous parasitic agent causing malaria, invades human red blood cells (RBCs), causing hemolysis and microvascular obstruction. These and other pathological processes of malaria patients are due to metabolic and structural changes occurring in uninfected RBCs. In addition, infection activates the production of microparticles (MPs). ATP and byproducts are important extracellular ligands modulating purinergic signaling within the intravascular space. Here, we analyzed the contribution of uninfected RBCs and MPs to the regulation of extracellular ATP (eATP) of RBCs, which depends on the balance between ATP release by specific transporters and eATP hydrolysis by ectonucleotidases. RBCs were cultured with P. falciparum for 24-48 h prior to experiments, from which uninfected RBCs and MPs were purified. On-line luminometry was used to quantify the kinetics of ATP release. Luminometry, colorimetry and radioactive methods were used to assess the rate of eATP hydrolysis by ectonucleotidases. Rates of ATP release and eATP hydrolysis were also evaluated in MPs. Uninfected RBCs challenged by different stimuli displayed a strong and transient activation of ATP release, together with an elevated rate of eATP hydrolysis. MPs contained ATP in their lumen, which was released upon vesicle rupture, and were able to hydrolyze eATP. Results suggest that uninfected RBCs and MPs can act as important determinants of eATP regulation of RBCs during malaria. The comparison of eATP homeostasis in infected RBCs, ui-RBCs, and MPs allowed us to speculate on the impact of P. falciparum infection on intravascular purinergic signaling and the control of the vascular caliber by RBCs.


Subject(s)
Malaria , Plasmodium falciparum , Adenosine Triphosphate/metabolism , Erythrocytes/metabolism , Homeostasis , Humans , Malaria/metabolism , Plasmodium falciparum/metabolism
3.
Sci Adv ; 8(6): eabl4363, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35148183

ABSTRACT

Industrial production of therapeutic monoclonal antibodies is mostly performed in eukaryotic-based systems, allowing posttranslational modifications mandatory for their functional activity. The resulting elevated product cost limits therapy access to some patients. To address this limitation, we conceptualized a novel immunotherapeutic approach to redirect a preexisting polyclonal antibody response against Epstein-Barr virus (EBV) toward defined target cells. We engineered and expressed in bacteria bimodular fusion proteins (BMFPs) comprising an Fc-deficient binding moiety targeting an antigen expressed at the surface of a target cell, fused to the EBV-P18 antigen, which recruits circulating endogenous anti-P18 IgG in EBV+ individuals. Opsonization of BMFP-coated targets efficiently triggered antibody-mediated clearing effector mechanisms. When assessed in a P18-primed mouse tumor model, therapy performed with an anti-huCD20 BMFP significantly led to increased survival and total cancer remission in some animals. These results indicate that BMFPs could represent potent and useful therapeutic molecules to treat a number of diseases.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Animals , Antibodies, Viral , Antibody Formation , Epstein-Barr Virus Infections/therapy , Herpesvirus 4, Human/physiology , Humans , Mice
4.
J Infect Dis ; 225(11): 2011-2022, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34718641

ABSTRACT

BACKGROUND: Plasmodium falciparum-infected red blood cells (iRBCs) bind and sequester in deep vascular beds, causing malaria-related disease and death. In pregnant women, VAR2CSA binds to chondroitin sulfate A (CSA) and mediates placental sequestration, making it the major placental malaria (PM) vaccine target. METHODS: In this study, we characterize an invariant protein associated with PM called P falciparum chondroitin sulfate A ligand (PfCSA-L). RESULTS: Recombinant PfCSA-L binds both placental CSA and VAR2CSA with nanomolar affinity, and it is coexpressed on the iRBC surface with VAR2CSA. Unlike VAR2CSA, which is anchored by a transmembrane domain, PfCSA-L is peripherally associated with the outer surface of knobs through high-affinity protein-protein interactions with VAR2CSA. This suggests that iRBC sequestration involves complexes of invariant and variant surface proteins, allowing parasites to maintain both diversity and function at the iRBC surface. CONCLUSIONS: The PfCSA-L is a promising target for intervention because it is well conserved, exposed on infected cells, and expressed and localized with VAR2CSA.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Antibodies, Protozoan , Antigens, Protozoan , Chondroitin Sulfates , Erythrocytes/parasitology , Female , Humans , Malaria/prevention & control , Malaria, Falciparum/parasitology , Placenta/parasitology , Plasmodium falciparum , Pregnancy
5.
Nat Commun ; 11(1): 4015, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32782246

ABSTRACT

Intracellular pathogens mobilize host signaling pathways of their host cell to promote their own survival. Evidence is emerging that signal transduction elements are activated in a-nucleated erythrocytes in response to infection with malaria parasites, but the extent of this phenomenon remains unknown. Here, we fill this knowledge gap through a comprehensive and dynamic assessment of host erythrocyte signaling during infection with Plasmodium falciparum. We used arrays of 878 antibodies directed against human signaling proteins to interrogate the activation status of host erythrocyte phospho-signaling pathways at three blood stages of parasite asexual development. This analysis reveals a dynamic modulation of many host signalling proteins across parasite development. Here we focus on the hepatocyte growth factor receptor (c-MET) and the MAP kinase pathway component B-Raf, providing a proof of concept that human signaling kinases identified as activated by malaria infection represent attractive targets for antimalarial intervention.


Subject(s)
Antimalarials/pharmacology , Erythrocytes/metabolism , Plasmodium falciparum/drug effects , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Erythrocytes/parasitology , Host-Parasite Interactions , Humans , Inhibitory Concentration 50 , Life Cycle Stages/drug effects , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Phosphorylation/drug effects , Plasmodium falciparum/growth & development , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Protein Array Analysis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Signal Transduction/drug effects
6.
Nat Microbiol ; 5(6): 848-863, 2020 06.
Article in English | MEDLINE | ID: mdl-32284562

ABSTRACT

The most severe form of human malaria is caused by Plasmodium falciparum. Its virulence is closely linked to the increase in rigidity of infected erythrocytes and their adhesion to endothelial receptors, obstructing blood flow to vital organs. Unlike other human-infecting Plasmodium species, P. falciparum exports a family of 18 FIKK serine/threonine kinases into the host cell, suggesting that phosphorylation may modulate erythrocyte modifications. We reveal substantial species-specific phosphorylation of erythrocyte proteins by P. falciparum but not by Plasmodium knowlesi, which does not export FIKK kinases. By conditionally deleting all FIKK kinases combined with large-scale quantitative phosphoproteomics we identified unique phosphorylation fingerprints for each kinase, including phosphosites on parasite virulence factors and host erythrocyte proteins. Despite their non-overlapping target sites, a network analysis revealed that some FIKKs may act in the same pathways. Only the deletion of the non-exported kinase FIKK8 resulted in reduced parasite growth, suggesting the exported FIKKs may instead support functions important for survival in the host. We show that one kinase, FIKK4.1, mediates both rigidification of the erythrocyte cytoskeleton and trafficking of the adhesin and key virulence factor PfEMP1 to the host cell surface. This establishes the FIKK family as important drivers of parasite evolution and malaria pathology.


Subject(s)
Erythrocytes/metabolism , Erythrocytes/parasitology , Malaria/metabolism , Malaria/parasitology , Phosphotransferases/metabolism , Plasmodium/physiology , Protozoan Proteins/metabolism , Gene Deletion , Gene Knockdown Techniques , Gene Targeting , Humans , Multigene Family , Phosphoproteins , Phosphorylation , Phosphotransferases/genetics , Protein Interaction Mapping , Protein Interaction Maps , Proteomics/methods , Species Specificity , Virulence
7.
Lancet Infect Dis ; 20(5): 585-597, 2020 05.
Article in English | MEDLINE | ID: mdl-32032566

ABSTRACT

BACKGROUND: PRIMVAC is a VAR2CSA-derived placental malaria vaccine candidate aiming to prevent serious clinical outcomes of Plasmodium falciparum infection during pregnancy. We assessed the safety and immunogenicity of PRIMVAC adjuvanted with Alhydrogel or glucopyranosyl lipid adjuvant in stable emulsion (GLA-SE) in French and Burkinabe women who were not pregnant. METHODS: This first-in-human, randomised, double-blind, placebo-controlled, dose escalation trial was done in two staggered phases, a phase 1A trial in 18-35-year-old women who were malaria naive in a hospital in France and a subsequent phase 1B trial in women who were naturally exposed to P falciparum and nulligravid in the clinical site of a research centre in Burkina Faso. Volunteers were recruited into four sequential cohorts receiving PRIMVAC intramuscularly at day 0, 28, and 56: two cohorts in France receiving 20 µg or 50 µg of PRIMVAC and then two in Burkina Faso receiving 50 µg or 100 µg of PRIMVAC. Volunteers were randomly assigned (1:1) to two groups (PRIMVAC adjuvanted with either Alhydrogel or GLA-SE) in France and randomly assigned (2:2:1) to three groups (PRIMVAC adjuvanted with either Alhydrogel, GLA-SE, or placebo) in Burkina Faso. Randomisation was centralised, using stratification by cohort and blocks of variable size, and syringes were masked by opaque labels. The primary endpoint was the proportion of participants with any grade 3 or higher adverse reaction to vaccination up until day 35. Safety at later time points as well as humoral and cellular immunogenicity were assessed in secondary endpoints. This trial is registered with ClinicalTrials.gov, NCT02658253. FINDINGS: Between April 19, 2016, and July 13, 2017, 68 women (18 in France, 50 in Burkina Faso) of 101 assessed for eligibility were included. No serious adverse event related to the vaccine occurred. PRIMVAC antibody titres increased with each dose and seroconversion was observed in all women vaccinated with PRIMVAC (n=57). PRIMVAC antibody titres reached a peak (geometric mean 11 843·0, optical density [OD] 1·0, 95% CI 7559·8-18 552·9 with 100 µg dose and GLA-SE) 1 week after the third vaccination (day 63). Compared with Alhydrogel, GLA-SE tended to improve the PRIMVAC antibody response (geometric mean 2163·5, OD 1·0, 95% CI 1315·7-3557·7 with 100 µg dose and Alhydrogel at day 63). 1 year after the last vaccination, 20 (71%) of 28 women who were vaccinated with PRIMVAC/Alhydrogel and 26 (93%) of 28 women who were vaccinated with PRIMVAC/GLA-SE still had anti-PRIMVAC antibodies, although antibody magnitude was markedly lower (452·4, OD 1·0, 95% CI 321·8-636·1 with 100 µg dose and GLA-SE). These antibodies reacted with native homologous VAR2CSA expressed by NF54-CSA infected erythrocytes (fold change from baseline at day 63 with 100 µg dose and GLA-SE: 10·74, 95% CI 8·36-13·79). Limited cross-recognition, restricted to sera collected from women that received the 100 µg PRIMVAC dose, was observed against heterologous VAR2CSA variants expressed by FCR3-CSA (fold change from baseline at day 63: 1·49, 95% CI 1·19-1·88) and 7G8-CSA infected erythrocytes (1·2, 1·08-1·34). INTERPRETATION: PRIMVAC adjuvanted with Alhydrogel or GLA-SE had an acceptable safety profile, was immunogenic, and induced functional antibodies reacting with the homologous VAR2CSA variant expressed by NF54-CSA infected erythrocytes. Cross-reactivity against heterologous VAR2CSA variants was limited and only observed in the higher dose group. An alternate schedule of immunisation, antigen dose, and combinations with other VAR2CSA-based vaccines are envisaged to improve the cross-reactivity against heterologous VAR2CSA variants. FUNDING: Bundesministerium für Bildung und Forschung, through Kreditanstalt für Wiederaufbau, Germany; Inserm, and Institut National de Transfusion Sanguine, France; Irish Aid, Department of Foreign Affairs and Trade, Ireland.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Aluminum Hydroxide/immunology , Glucosides/immunology , Lipid A/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Adolescent , Adult , Antibody Formation/immunology , Burkina Faso , Double-Blind Method , Female , France , Humans , Immunization/methods , Immunogenicity, Vaccine/immunology , Plasmodium falciparum/immunology , Vaccination/methods , Young Adult
8.
Front Immunol ; 11: 624126, 2020.
Article in English | MEDLINE | ID: mdl-33633743

ABSTRACT

Over 30 million women living in P. falciparum endemic areas are at risk of developing malaria during pregnancy every year. Placental malaria is characterized by massive accumulation of infected erythrocytes in the intervillous space of the placenta, accompanied by infiltration of immune cells, particularly monocytes. The consequent local inflammation and the obstruction of the maternofetal exchanges can lead to severe clinical outcomes for both mother and child. Even if protection against the disease can gradually be acquired following successive pregnancies, the malaria parasite has developed a large panel of evasion mechanisms to escape from host defense mechanisms and manipulate the immune system to its advantage. Infected erythrocytes isolated from placentas of women suffering from placental malaria present a unique phenotype and express the pregnancy-specific variant VAR2CSA of the Plasmodium falciparum Erythrocyte Membrane Protein (PfEMP1) family at their surface. The polymorphic VAR2CSA protein is able to mediate the interaction of infected erythrocytes with a variety of host cells including placental syncytiotrophoblasts and leukocytes but also with components of the immune system such as non-specific IgM. This review summarizes the described VAR2CSA-mediated host defense evasion mechanisms employed by the parasite during placental malaria to ensure its survival and persistence.


Subject(s)
Antigens, Protozoan/immunology , Erythrocytes/immunology , Immune Evasion , Malaria, Falciparum/immunology , Placenta/immunology , Plasmodium falciparum/immunology , Pregnancy Complications, Parasitic/immunology , Erythrocytes/parasitology , Erythrocytes/pathology , Female , Humans , Malaria, Falciparum/pathology , Placenta/parasitology , Placenta/pathology , Pregnancy , Pregnancy Complications, Parasitic/parasitology , Pregnancy Complications, Parasitic/pathology
9.
PLoS Biol ; 17(6): e3000308, 2019 06.
Article in English | MEDLINE | ID: mdl-31181082

ABSTRACT

Plasmodium falciparum is the main cause of disease and death from malaria. P. falciparum virulence resides in the ability of infected erythrocytes (IEs) to sequester in various tissues through the interaction between members of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesin family to various host receptors. Here, we investigated the effect of phosphorylation of variant surface antigen 2-CSA (VAR2CSA), a member of the PfEMP1 family associated to placental sequestration, on its capacity to adhere to chondroitin sulfate A (CSA) present on the placental syncytium. We showed that phosphatase treatment of IEs impairs cytoadhesion to CSA. MS analysis of recombinant VAR2CSA phosphosites prior to and after phosphatase treatment, as well as of native VAR2CSA expressed on IEs, identified critical phosphoresidues associated with CSA binding. Site-directed mutagenesis on recombinant VAR2CSA of 3 phosphoresidues localised within the CSA-binding region confirmed in vitro their functional importance. Furthermore, using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9), we generated a parasite line in which the phosphoresidue T934 is changed to alanine and showed that this mutation strongly impairs IEs cytoadhesion to CSA. Taken together, these results demonstrate that phosphorylation of the extracellular region of VAR2CSA plays a major role in IEs cytoadhesion to CSA and provide new molecular insights for strategies aiming to reduce the morbidity and mortality of PM.


Subject(s)
Antigens, Protozoan/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Animals , Antigenic Variation , Antigens, Protozoan/metabolism , Cell Culture Techniques , Cell Line , Erythrocytes/parasitology , Female , Humans , Malaria , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Parasites , Phosphorylation , Placenta , Plasmodium falciparum/genetics , Pregnancy , Protein Binding
10.
Pathogens ; 6(2)2017 04 21.
Article in English | MEDLINE | ID: mdl-28430160

ABSTRACT

Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.

12.
Malar J ; 14: 493, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26646943

ABSTRACT

BACKGROUND: Malaria is still one of the most prevalent infectious diseases in the world. Sequestration of infected erythrocytes (IEs) is the prime mediator of disease. Cytoadhesion of IEs is mediated by members of the highly diverse Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). A restricted sub-set of var genes encoding for PfEMP1s possessing the domain cassettes DC8 and DC13 were found to bind to the endothelial protein C receptor (EPCR). These var genes were shown to be highly expressed by parasites from patients with severe malaria clinical outcomes compared to those from patients with uncomplicated symptoms. METHODS: In order to further study the molecular mechanisms underlying DC8/DC13 expressing IEs adhesion to EPCR, a method was developed to produce highly pure recombinant EPCR. The IT4 parasite strain was selected on either anti-IT4-VAR19 purified IgG, EPCR or human brain endothelial cell line and their var gene expression profiles as well as their binding phenotypes were compared. The N-terminal region of IT4-VAR19 comprising a full-length DC8 cassette as well as the single EPCR binding CIDRα1.1 domain were also produced, and their immune recognition (IgG) was assessed using plasma samples from Beninese children presenting acute mild malaria, severe malaria or cerebral malaria at the time of their admission to the clinic, and from convalescent-phase plasma collected 30 days after anti-malarial treatment. RESULTS: The multi-domain VAR19-NTS-DBLγ6 binds to EPCR with a greater affinity than the CIDRα1.1 domain alone and this study also demonstrates that VAR19-NTS-DBLγ6 binding to the EPCR-expressing endothelial cell line (HBEC5i) is more pronounced than that of the CIDRα1.1 domain alone. IT4-VAR19 represents the preferentially expressed-PfEMP1 when FCR3-IEs are selected based on their capability to bind EPCR. Notably, no significant difference in the levels of antibodies towards IT4-VAR19 antigens was observed within all clinical groups between plasma samples collected during the acute malaria phase compared to samples collected 30 days after anti-malaria treatment. CONCLUSIONS: These data indicate that even being the preferentially selected IT4-EPCR-binding variant, the IT4-VAR19-DC8 region does not appear to be associated with the acquisition of antibodies during a single severe paediatric malaria episode in Benin.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Malaria, Cerebral/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Animals , Antigens, CD/metabolism , Antigens, Protozoan/genetics , Benin , Cell Adhesion , Child, Preschool , Cohort Studies , Endothelial Cells/physiology , Endothelial Protein C Receptor , Erythrocytes/parasitology , Erythrocytes/physiology , Female , Genotype , Humans , Infant , Infant, Newborn , Male , Protein Binding , Protozoan Proteins/genetics , Rabbits , Receptors, Cell Surface/metabolism
13.
Mol Biochem Parasitol ; 201(1): 76-82, 2015 May.
Article in English | MEDLINE | ID: mdl-26094597

ABSTRACT

Binding of host immunoglobulin is a common immune evasion mechanism demonstrated by microbial pathogens. Previous work showed that the malaria parasite Plasmodium falciparum binds the Fc-region of human IgM molecules, resulting in a coating of IgM on the surface of infected erythrocytes. IgM binding is a property of P. falciparum strains showing virulence-related phenotypes such as erythrocyte rosetting. The parasite ligands for IgM binding are members of the diverse P. falciparum Erythrocyte Membrane Protein One (PfEMP1) family. However, little is known about the amino acid sequence requirements for IgM binding. Here we studied an IgM binding domain from a rosette-mediating PfEMP1 variant, DBL4ζ of TM284var1, and found that the minimal IgM binding region mapped to the central region of the DBL domain, comprising all of subdomain 2 and adjoining parts of subdomains 1 and 3. Site-directed mutagenesis of charged amino acids within subdomain 2, predicted by molecular modelling to form the IgM binding site, showed no marked effect on IgM binding properties. Overall, this study identifies the minimal IgM binding region of a PfEMP1 domain, and indicates that the existing homology model of PfEMP1-IgM interaction is incorrect. Further work is needed to identify the specific interaction site for IgM within the minimal binding region of PfEMP1.


Subject(s)
Immunoglobulin M/immunology , Protozoan Proteins/immunology , Amino Acid Sequence , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protozoan Proteins/genetics
14.
Cell Logist ; 2(2): 126-131, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-23125952

ABSTRACT

Eukaryotic, prokaryotic and viral pathogens are known to interfere with signaling pathways of their host to promote their own survival and proliferation. Here, we present selected examples of modulation of PAK activity in human cells by both intracellular and extracellular pathogens, focusing on one eukaryotic pathogen, the human malaria parasite Plasmodium falciparum, two Gram-negative bacteria (Helicobacter pylori and Pseudomonas aeruginosa), and two viruses belonging to distinct groups, the lentivirus HIV and the orthomyxovirus Influenza virus A.

15.
PLoS Pathog ; 8(4): e1002665, 2012.
Article in English | MEDLINE | ID: mdl-22532802

ABSTRACT

Sequence diversity in pathogen antigens is an obstacle to the development of interventions against many infectious diseases. In malaria caused by Plasmodium falciparum, the PfEMP1 family of variant surface antigens encoded by var genes are adhesion molecules that play a pivotal role in malaria pathogenesis and clinical disease. PfEMP1 is a major target of protective immunity, however, development of drugs or vaccines based on PfEMP1 is problematic due to extensive sequence diversity within the PfEMP1 family. Here we identified the PfEMP1 variants transcribed by P. falciparum strains selected for a virulence-associated adhesion phenotype (IgM-positive rosetting). The parasites transcribed a subset of Group A PfEMP1 variants characterised by an unusual PfEMP1 architecture and a distinct N-terminal domain (either DBLα1.5 or DBLα1.8 type). Antibodies raised in rabbits against the N-terminal domains showed functional activity (surface reactivity with live infected erythrocytes (IEs), rosette inhibition and induction of phagocytosis of IEs) down to low concentrations (<10 µg/ml of total IgG) against homologous parasites. Furthermore, the antibodies showed broad cross-reactivity against heterologous parasite strains with the same rosetting phenotype, including clinical isolates from four sub-Saharan African countries that showed surface reactivity with either DBLα1.5 antibodies (variant HB3var6) or DBLα1.8 antibodies (variant TM284var1). These data show that parasites with a virulence-associated adhesion phenotype share IE surface epitopes that can be targeted by strain-transcending antibodies to PfEMP1. The existence of shared surface epitopes amongst functionally similar disease-associated P. falciparum parasite isolates suggests that development of therapeutic interventions to prevent severe malaria is a realistic goal.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Africa South of the Sahara , Animals , Erythrocytes/immunology , Erythrocytes/parasitology , Female , Humans , Malaria, Falciparum/prevention & control , Male , Protein Structure, Tertiary , Rabbits
16.
Nat Commun ; 2: 565, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22127061

ABSTRACT

The role of protein phosphorylation in the life cycle of malaria parasites is slowly emerging. Here we combine global phospho-proteomic analysis with kinome-wide reverse genetics to assess the importance of protein phosphorylation in Plasmodium falciparum asexual proliferation. We identify 1177 phosphorylation sites on 650 parasite proteins that are involved in a wide range of general cellular activities such as DNA synthesis, transcription and metabolism as well as key parasite processes such as invasion and cyto-adherence. Several parasite protein kinases are themselves phosphorylated on putative regulatory residues, including tyrosines in the activation loop of PfGSK3 and PfCLK3; we show that phosphorylation of PfCLK3 Y526 is essential for full kinase activity. A kinome-wide reverse genetics strategy identified 36 parasite kinases as likely essential for erythrocytic schizogony. These studies not only reveal processes that are regulated by protein phosphorylation, but also define potential anti-malarial drug targets within the parasite kinome.


Subject(s)
Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Plasmodium falciparum/pathogenicity , Proteomics/methods , Protozoan Proteins/metabolism , Animals , Humans , Phosphorylation
17.
Microbiology (Reading) ; 157(Pt 10): 2785-2794, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21757488

ABSTRACT

The Plasmodium falciparum kinome includes a family of four protein kinases (Pfnek-1 to -4) related to the NIMA (never-in-mitosis) family, members of which play important roles in mitosis and meiosis in eukaryotic cells. Only one of these, Pfnek-1, which we previously characterized at the biochemical level, is expressed in asexual parasites. The other three (Pfnek-2, -3 and -4) are expressed predominantly in gametocytes, and a role for nek-2 and nek-4 in meiosis has been documented. Here we show by reverse genetics that Pfnek-1 is required for completion of the asexual cycle in red blood cells and that its expression in gametocytes in detectable by immunofluorescence in male (but not in female) gametocytes, in contrast with Pfnek-2 and Pfnek-4. This indicates that the function of Pfnek-1 is non-redundant with those of the other members of the Pfnek family and identifies Pfnek-1 as a potential target for antimalarial chemotherapy. A medium-throughput screen of a small-molecule library provides proof of concept that recombinant Pfnek-1 can be used as a target in drug discovery.


Subject(s)
Cell Cycle Proteins/metabolism , Erythrocytes/parasitology , Malaria, Falciparum/parasitology , Plasmodium falciparum/enzymology , Plasmodium falciparum/physiology , Protein Serine-Threonine Kinases/metabolism , Protozoan Proteins/metabolism , Cell Cycle Proteins/genetics , Female , Humans , Male , Multigene Family , NIMA-Related Kinase 1 , Plasmodium falciparum/genetics , Protein Serine-Threonine Kinases/genetics , Protozoan Proteins/genetics , Reproduction, Asexual , Species Specificity
18.
Cell Microbiol ; 13(6): 836-45, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21371233

ABSTRACT

Merozoites of malaria parasites invade red blood cells (RBCs), where they multiply by schizogony, undergoing development through ring, trophozoite and schizont stages that are responsible for malaria pathogenesis. Here, we report that a protein kinase-mediated signalling pathway involving host RBC PAK1 and MEK1, which do not have orthologues in the Plasmodium kinome, is selectively stimulated in Plasmodium falciparum-infected (versus uninfected) RBCs, as determined by the use of phospho-specific antibodies directed against the activated forms of these enzymes. Pharmacological interference with host MEK and PAK function using highly specific allosteric inhibitors in their known cellular IC50 ranges results in parasite death. Furthermore, MEK inhibitors have parasiticidal effects in vitro on hepatocyte and erythrocyte stages of the rodent malaria parasite Plasmodium berghei, indicating conservation of this subversive strategy in malaria parasites. These findings have profound implications for the development of novel strategies for antimalarial chemotherapy.


Subject(s)
Erythrocytes/enzymology , Erythrocytes/parasitology , MAP Kinase Kinase 1/metabolism , Plasmodium falciparum/pathogenicity , Signal Transduction , p21-Activated Kinases/metabolism , Animals , Antimalarials/pharmacology , Erythrocytes/metabolism , Humans , Inhibitory Concentration 50 , Plasmodium berghei/pathogenicity , Protein Kinase Inhibitors/pharmacology
19.
Biochim Biophys Acta ; 1804(3): 604-12, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19840874

ABSTRACT

Malaria still remains one of the deadliest infectious diseases, and has a tremendous morbidity and mortality impact in the developing world. The propensity of the parasites to develop drug resistance, and the relative reluctance of the pharmaceutical industry to invest massively in the developments of drugs that would offer only limited marketing prospects, are major issues in antimalarial drug discovery. Protein kinases (PKs) have become a major family of targets for drug discovery research in a number of disease contexts, which has generated considerable resources such as kinase-directed libraries and high throughput kinase inhibition assays. The phylogenetic distance between malaria parasites and their human host translates into important divergences in their respective kinomes, and most Plasmodium kinases display atypical properties (as compared to mammalian PKs) that can be exploited towards selective inhibition. Here, we discuss the taxon-specific kinases possessed by malaria parasites, and give an overview of target PKs that have been validated by reverse genetics, either in the human malaria parasite Plasmodium falciparum or in the rodent model Plasmodium berghei. We also briefly allude to the possibility of attacking Plasmodium through the inhibition of human PKs that are required for survival of this obligatory intracellular parasite, and which are targets for other human diseases.


Subject(s)
Drug Delivery Systems/methods , Malaria/drug therapy , Plasmodium berghei/enzymology , Plasmodium falciparum/enzymology , Protein Kinase Inhibitors/therapeutic use , Protein Kinases , Protozoan Proteins/antagonists & inhibitors , Animals , Humans , Malaria/enzymology , Protein Kinase Inhibitors/chemistry
20.
Mol Genet Genomics ; 282(5): 547-54, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19787376

ABSTRACT

In eukaryotes, repeat proteins (i.e. proteins that contain a tandem arrangement of repeated structural elements) are often considered as an extra source of variability, and gains and losses of repeats may be an important force driving the evolution and diversification of such proteins, that could allow fast adaptation to new environments. Here, we report genomic sequences of the MAP-1 protein family from of the asexual, plant-parasitic nematode Meloidogyne incognita. The encoded proteins exhibited highly conserved repeats of 13 and 58 aa, and variation in the number and arrangement of these repeats in the MAP-1 proteins was correlated with nematode (a)virulence, suggesting a possible role in the specificity of the plant-nematode interaction. Search in the complete genome sequence of M. incognita confirmed that a small gene family encoding proteins harboring conserved 58 and 13 aa-repeats is present in this nematode, and that the repetitive region of these proteins is modular. Both gene duplication and intragenic gain and loss of repeats have contributed to the complex evolutionary history of the map-1 gene family, and active selection pressure of the plant host probably induced recent additional gene loss, finally resulting in the present-day gene and repeat diversity observed among nematode lines. The genomic differences characterized here between avirulent and virulent individuals are assumed to reflect, at the DNA level, the adaptive capacity of these asexual root-knot nematodes.


Subject(s)
Evolution, Molecular , Genes, Helminth/genetics , Multigene Family/genetics , Plant Diseases/parasitology , Plant Roots/parasitology , Tylenchoidea/genetics , Animals , Genome/genetics , Helminth Proteins/chemistry , Helminth Proteins/genetics , Models, Genetic , Phylogeny , Polymorphism, Genetic , Repetitive Sequences, Amino Acid , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...