Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(1): e0279862, 2023.
Article in English | MEDLINE | ID: mdl-36595521

ABSTRACT

The Sweepstakes, in Fathom Five National Marine Park, is Ontario's most iconic shipwreck with over 100,000 visitors each summer. Continued exposure to water currents has directly and indirectly affected the integrity of the wreck and resulted in management interventions including efforts to stabilize the wreck and control vessel activity (both duration and speed). Despite these efforts, a scour ring is present in the sediment around the Sweepstakes, raising concerns regarding the prolonged stability of the wreck. An extensive series of field measurements were made during the summer of 2015 with the aim of differentiating between natural hydrological processes present at this site and human-derived water movements during the summer visitor season. There is a high-degree of natural current variability from processes as diverse as wind-induced surface gravity waves, internal gravity waves, and diurnal flows due to differential heating. Our results show that summer circulation driven by internal gravity waves derived from upwelling, surface waves, and differential heating was insignificant with respect to sediment resuspension and thus unlikely to produce the observed scour around the shipwreck. Scour is most likely caused by energetic winter storms, which should be a focus of future studies. While vessel induced currents were detectable at the shipwreck, they were no larger than the normal summer hydrodynamic variability, thus suggesting that management efforts continue to protect the site generally.


Subject(s)
Environmental Monitoring , Geologic Sediments , Humans , Lakes , Water Movements , Water
2.
Mar Pollut Bull ; 170: 112573, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34144395

ABSTRACT

Buoyant microplastic pollution disperses widely from sources via strong wind-driven water currents in lakes and oceans. This ability for dispersal depends critically upon the particle's density, which can change over time due to microbial growth (biofilm). This study quantifies biofilm-induced sinking rates of irregularly-shaped polypropylene granules (~125-2000 µm) via ex-situ experiments emulating a Great Lakes freshwater environment. Biofilm development increases particle density and lowers microplastic rise velocities, eventually causing sinking. We observed sinking for 100% of small and intermediate microplastics, and 95% of large microplastics. Under constant environmental conditions, sinking onset was observed sooner for smaller particles (~125-212 µm, 18 days) than for larger particles (~1000-2000 µm, 50 days). Differences in settling onset would lead to size-fractionation of particle sedimentation, whereby smaller particles are deposited closer to their sources relative to larger particles. Our study demonstrates a novel mechanism by which buoyant microplastics can selectively sink from the lake surface.


Subject(s)
Microplastics , Water Pollutants, Chemical , Biofilms , Environmental Monitoring , Lakes , Plastics , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...