Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 10(30): e2303622, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37626451

ABSTRACT

The chemical interaction of Sn with H2 by X-ray diffraction methods at pressures of 180-210 GPa is studied. A previously unknown tetrahydride SnH4 with a cubic structure (fcc) exhibiting superconducting properties below TC  = 72 K is obtained; the formation of a high molecular C2/m-SnH14 superhydride and several lower hydrides, fcc SnH2 , and C2-Sn12 H18 , is also detected. The temperature dependence of critical current density JC (T) in SnH4 yields the superconducting gap 2Δ(0) = 21.6 meV at 180 GPa. SnH4 has unusual behavior in strong magnetic fields: B,T-linear dependences of magnetoresistance and the upper critical magnetic field BC2 (T) ∝ (TC - T). The latter contradicts the Wertheimer-Helfand-Hohenberg model developed for conventional superconductors. Along with this, the temperature dependence of electrical resistance of fcc SnH4 in non-superconducting state exhibits a deviation from what is expected for phonon-mediated scattering described by the Bloch-Grüneisen model and is beyond the framework of the Fermi liquid theory. Such anomalies occur for many superhydrides, making them much closer to cuprates than previously believed.

2.
J Phys Chem Lett ; 14(29): 6666-6671, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37463103

ABSTRACT

A comprehensive study of vortex phases and vortex dynamics is presented for a recently discovered high-temperature superconductor YH6 with Tc(onset) of 215 K under a pressure of 200 GPa. The thermal activation energy (U0) is derived within the framework of the thermally activated flux flow (TAFF) theory. The activation energy yields a power law dependence U0 ∝ Hα on magnetic field with a possible crossover at a field around 8-10 T. Furthermore, we have depicted the vortex phase transition from the vortex-glass to vortex-liquid state according to the vortex-glass theory. Finally, vortex phase diagram is constructed for the first time for superhydrides. Very high estimated values of flux flow barriers U0(H) = (1.5-7) × 104 K together with high crossover fields make YH6 a rather outstanding superconductor as compared to most cuprates and iron-based systems. The Ginzburg number for YH6 Gi = (3-7) × 10-3 indicates that thermal fluctuations are not so strong and cannot broaden superconducting transitions in weak magnetic fields.

3.
Nat Commun ; 14(1): 2660, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160883

ABSTRACT

Ternary hydrides are regarded as an important platform for exploring high-temperature superconductivity at relatively low pressures. Here, we successfully synthesized the hcp-(La,Ce)H9-10 at 113 GPa with the initial La/Ce ratio close to 3:1. The high-temperature superconductivity was strikingly observed at 176 K and 100 GPa with the extrapolated upper critical field Hc2(0) reaching 235 T. We also studied the binary La-H system for comparison, which exhibited a Tc of 103 K at 78 GPa. The Tc and Hc2(0) of the La-Ce-H are respectively enhanced by over 80 K and 100 T with respect to the binary La-H and Ce-H components. The experimental results and theoretical calculations indicate that the formation of the solid solution contributes not only to enhanced stability but also to superior superconducting properties. These results show how better superconductors can be engineered in the new hydrides by large addition of alloy-forming elements.

4.
Adv Mater ; 34(42): e2204038, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35829689

ABSTRACT

Polyhydrides are a novel class of superconducting materials with extremely high critical parameters, which is very promising for sensor applications. On the other hand, a complete experimental study of the best so far known superconductor, lanthanum superhydride LaH10 , encounters a serious complication because of the large upper critical magnetic field HC2 (0), exceeding 120-160 T. It is found that partial replacement of La atoms by magnetic Nd atoms results in significant suppression of superconductivity in LaH10 : each at% of Nd causes a decrease in TC by 10-11 K, helping to control the critical parameters of this compound. Strong pulsed magnetic fields up to 68 T are used to study the Hall effect, magnetoresistance, and the magnetic phase diagram of ternary metal polyhydrides for the first time. Surprisingly, (La,Nd)H10 demonstrates completely linear HC2 (T) âˆ |T - TC |, which calls into question the applicability of the Werthamer-Helfand-Hohenberg model for polyhydrides. The suppression of superconductivity in LaH10 by magnetic Nd atoms and the robustness of TC with respect to nonmagnetic impurities (e.g., Y, Al, C) under Anderson's theorem gives new experimental evidence of the isotropic (s-wave) character of conventional electron-phonon pairing in lanthanum decahydride.

5.
Adv Mater ; 34(27): e2200924, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35451134

ABSTRACT

Recently, several research groups announced reaching the point of metallization of hydrogen above 400 GPa. Despite notable progress, detecting superconductivity in compressed hydrogen remains an unsolved problem. Following the mainstream of extensive investigations of compressed metal polyhydrides, here small doping of molecular hydrogen by strontium is demonstrated to lead to a dramatic reduction in the metallization pressure to ≈200 GPa. Studying the high-pressure chemistry of the Sr-H system, the formation of several new phases is observed: C2/m-Sr3 H13 , pseudocubic SrH6 , SrH9 with cubic F 4 ¯ 3 m $F\bar{4}3m$ -Sr sublattice, and pseudo tetragonal superionic P1-SrH22 , the metal hydride with the highest hydrogen content (96 at%) discovered so far. High diffusion coefficients of hydrogen in the latter phase DH  = 0.2-2.1 × 10-9 m2 s-1 indicate an amorphous state of the H-sublattice, whereas the strontium sublattice remains solid. Unlike Ca and Y, strontium forms molecular semiconducting polyhydrides, whereas calcium and yttrium polyhydrides are high-TC superconductors with an atomic H sublattice. The discovered SrH22 , a kind of hydrogen sponge, opens a new class of materials with ultrahigh content of hydrogen.

6.
Phys Rev Lett ; 127(11): 117001, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34558917

ABSTRACT

The discoveries of high-temperature superconductivity in H_{3}S and LaH_{10} have excited the search for superconductivity in compressed hydrides, finally leading to the first discovery of a room-temperature superconductor in a carbonaceous sulfur hydride. In contrast to rapidly expanding theoretical studies, high-pressure experiments on hydride superconductors are expensive and technically challenging. Here, we experimentally discovered superconductivity in two new phases, Fm3[over ¯]m-CeH_{10} (SC-I phase) and P6_{3}/mmc-CeH_{9} (SC-II phase) at pressures that are much lower (<100 GPa) than those needed to stabilize other polyhydride superconductors. Superconductivity was evidenced by a sharp drop of the electrical resistance to zero and decreased critical temperature in deuterated samples and in external magnetic field. SC-I has T_{c}=115 K at 95 GPa, showing an expected decrease in further compression due to the decrease of the electron-phonon coupling (EPC) coefficient λ (from 2.0 at 100 GPa to 0.8 at 200 GPa). SC-II has T_{c}=57 K at 88 GPa, rapidly increasing to a maximum T_{c}∼100 K at 130 GPa, and then decreasing in further compression. According to the theoretical calculation, this is due to a maximum of λ at the phase transition from P6_{3}/mmc-CeH_{9} into a symmetry-broken modification C2/c-CeH_{9}. The pressure-temperature conditions of synthesis affect the actual hydrogen content and the actual value of T_{c}. Anomalously low pressures of stability of cerium superhydrides make them appealing for studies of superhydrides and for designing new superhydrides with stability at even lower pressures.

7.
Adv Mater ; 33(15): e2006832, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33751670

ABSTRACT

Pressure-stabilized hydrides are a new rapidly growing class of high-temperature superconductors, which is believed to be described within the conventional phonon-mediated mechanism of coupling. Here, the synthesis of one of the best-known high-TC superconductors-yttrium hexahydride I m 3 ¯ m -YH6 is reported, which displays a superconducting transition at ≈224 K at 166 GPa. The extrapolated upper critical magnetic field Bc2 (0) of YH6 is surprisingly high: 116-158 T, which is 2-2.5 times larger than the calculated value. A pronounced shift of TC in yttrium deuteride YD6 with the isotope coefficient 0.4 supports the phonon-assisted superconductivity. Current-voltage measurements show that the critical current IC and its density JC may exceed 1.75 A and 3500 A mm-2 at 4 K, respectively, which is higher than that of the commercial superconductors, such as NbTi and YBCO. The results of superconducting density functional theory (SCDFT) and anharmonic calculations, together with anomalously high critical magnetic field, suggest notable departures of the superconducting properties from the conventional Migdal-Eliashberg and Bardeen-Cooper-Schrieffer theories, and presence of an additional mechanism of superconductivity.

8.
Nat Commun ; 12(1): 273, 2021 Jan 11.
Article in English | MEDLINE | ID: mdl-33431840

ABSTRACT

Following the discovery of high-temperature superconductivity in the La-H system, we studied the formation of new chemical compounds in the barium-hydrogen system at pressures from 75 to 173 GPa. Using in situ generation of hydrogen from NH3BH3, we synthesized previously unknown superhydride BaH12 with a pseudocubic (fcc) Ba sublattice in four independent experiments. Density functional theory calculations indicate close agreement between the theoretical and experimental equations of state. In addition, we identified previously known P6/mmm-BaH2 and possibly BaH10 and BaH6 as impurities in the samples. Ab initio calculations show that newly discovered semimetallic BaH12 contains H2 and H3- molecular units and detached H12 chains which are formed as a result of a Peierls-type distortion of the cubic cage structure. Barium dodecahydride is a unique molecular hydride with metallic conductivity that demonstrates the superconducting transition around 20 K at 140 GPa.

9.
J Phys Chem Lett ; 12(1): 32-40, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33296213

ABSTRACT

We conducted a joint experimental-theoretical investigation of the high-pressure chemistry of europium polyhydrides at pressures of 86-130 GPa. We discovered several novel magnetic Eu superhydrides stabilized by anharmonic effects: cubic EuH9, hexagonal EuH9, and an unexpected cubic (Pm3n) clathrate phase, Eu8H46. Monte Carlo simulations indicate that cubic EuH9 has antiferromagnetic ordering with TN of up to 24 K, whereas hexagonal EuH9 and Pm3n-Eu8H46 possess ferromagnetic ordering with TC = 137 and 336 K, respectively. The electron-phonon interaction is weak in all studied europium hydrides, and their magnetic ordering excludes s-wave superconductivity, except, perhaps, for distorted pseudohexagonal EuH9. The equations of state predicted within the DFT+U approach (U - J were found within linear response theory) are in close agreement with the experimental data. This work shows the great influence of the atomic radius on symmetry-breaking distortions of the crystal structures of superhydrides and on their thermodynamic stability.

10.
Sci Adv ; 6(9): eaax6849, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32158937

ABSTRACT

Superhydrides have complex hydrogenic sublattices and are important prototypes for studying metallic hydrogen and high-temperature superconductors. Previous results for LaH10 suggest that the Pr-H system may be especially worth studying because of the magnetism and valence-band f-electrons in the element Pr. Here, we successfully synthesized praseodymium superhydrides (PrH9) in laser-heated diamond anvil cells. Synchrotron x-ray diffraction analysis demonstrated the presence of previously predicted F 4 ¯ 3m-PrH9 and unexpected P63/mmc-PrH9 phases. Experimental studies of electrical resistance in the PrH9 sample showed the emergence of a possible superconducting transition (T c) below 9 K and T c dependent on the applied magnetic field. Theoretical calculations indicate that magnetic order and likely superconductivity coexist in a narrow range of pressures in the PrH9 sample, which may contribute to its low superconducting temperature. Our results highlight the intimate connections between hydrogenic sublattices, density of states, magnetism, and superconductivity in Pr-based superhydrides.

11.
J Am Chem Soc ; 142(6): 2803-2811, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31967807

ABSTRACT

Ongoing search for room-temperature superconductivity is inspired by the unique properties of the electron-phonon interaction in metal superhydrides. Encouraged by the recently found highest-TC superconductor fcc-LaH10, here we discover several superhydrides of another lanthanoid, neodymium. We identify three novel metallic Nd-H phases at pressures ranging from 85 to 135 GPa: I4/mmm-NdH4, C2/c-NdH7, and P63/mmc-NdH9, synthesized by laser-heating metal samples in NH3BH3 media for in situ generation of hydrogen. A lower trihydride Fm3̅m-NdH3 is found at pressures from 2 to 52 GPa. I4/mmm-NdH4 and C2/c-NdH7 are stable from 135 to 85 GPa, and P63/mmc-NdH9 is stable from 110 to 130 GPa. Measurements of the electrical resistance of NdH9 demonstrate a possible superconducting transition at ∼4.5 K in P63/mmc-NdH9. Our theoretical calculations predict that all of the neodymium hydrides have antiferromagnetic order at pressures below 150 GPa and represent one of the first discovered examples of strongly correlated superhydrides with large exchange spin-splitting in the electronic band structure (>450 meV). The critical Néel temperatures for new neodymium hydrides are estimated using the mean-field approximation to be about 4 K (NdH4), 251 K (NdH7), and 136 K (NdH9).

12.
ACS Appl Mater Interfaces ; 10(50): 43809-43816, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30512924

ABSTRACT

New stable phase thorium decahydride Fm3̅ m-ThH10, a high-temperature superconductor with TC up to 241 K (-32 °C), critical field HC up to 71 T, and superconducting gap Δ0 of 52 meV at 80-100 GPa, is predicted by evolutionary algorithm USPEX. Another phase, P21/ c-ThH7, is found to be a superconductor with TC of 62 K. Analysis of the superconducting state was performed within Eliashberg formalism, and HC( T), Δ( T), and TC( P) functions with a jump in the specific heat at critical temperature were calculated. Several other new thorium hydrides were predicted to be stable under pressure, including ThH3, Th3H10, ThH4, and ThH6. Thorium (which has s2 d2 electronic configuration) forms high- TC polyhydrides similar to those formed by s2 d1 metals (Y-La-Ac). Thorium belongs to the Mg-Ca-Sc-Y-La-Ac family of elements forming high- TC superconducting hydrides.

13.
J Phys Chem Lett ; 9(8): 1920-1926, 2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29589444

ABSTRACT

The stability of numerous unexpected actinium hydrides was predicted via the evolutionary algorithm USPEX. The electron-phonon interaction was investigated for the hydrogen-richest and most symmetric phases: R3̅ m-AcH10, I4/ mmm-AcH12, and P6̅ m2-AcH16. Predicted structures of actinium hydrides are consistent with all previously studied Ac-H phases and demonstrate phonon-mediated high-temperature superconductivity with TC in the range of 204-251 K for R3̅ m-AcH10 at 200 GPa and 199-241 K for P6̅ m2-AcH16 at 150 GPa, which was estimated by directly solving the Eliashberg equation. Actinium belongs to the series of d1 elements (Sc-Y-La-Ac) that form high- TC superconducting (HTSC) hydrides. Combining this observation with previous predictions of p0-HTSC hydrides (MgH6 and CaH6), we propose that p0 and d1 metals with low-lying empty orbitals tend to form phonon-mediated HTSC metal polyhydrides.

SELECTION OF CITATIONS
SEARCH DETAIL
...