Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37687506

ABSTRACT

This article presents a general theory of the ME effect in composites in the low- and high-frequency ranges. Besides the quasi-static region, the area of electromechanical resonance, including longitudinal, bending, longitudinal shear, and torsional modes, is considered in more detail. To demonstrate the theory, expressions of ME voltage coefficients are obtained for symmetric and asymmetric layered structures. A comparison is made with the experimental results for the GaAs/Metglas and LiNbO3/Metglas structures. The main microwave ME effect, consisting of the FMR line shift in an electric field, for the ferromagnetic metals, their alloys, and YIG ferrite using various piezoelectrics is discussed. In addition to analytical calculations, in the article, finite element modeling is considered. The calculation methods and experimental results are compared for some composites.

2.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37498207

ABSTRACT

Plant-based foods are being considered seriously to replace traditional animal-origin foods for various reasons. It is well known that animals release large amounts of greenhouse gases into the environment during feeding, and eating animal-origin foods may also cause some health problems. Moreover, animal resources will likely be in short supply as the world population grows. It is highly likely that serious health problems ascribed to insufficient protein intake in some areas of the world will occur. Studies have shown that environmentally friendly, abundant, and customizable plant-based foods can be an effective alternative to animal-based foods. However, currently, available plant-based foods lack nutrients unique to animal-based foods. Innovative processing technologies are needed to improve the nutritional value and functionality of plant-based foods and make them acceptable to a wider range of consumers. Therefore, protein extraction technologies (e.g., high-pressure extraction, ultrasound extraction, enzyme extraction, etc.), structure improvement and assembly technologies (3D printing, micro-encapsulation, etc.), and technologies to improve digestibility and utilization of bioactive substances (microbial fermentation, physical, etc.) in the field of plant-based foods processing are reviewed. The challenges of plant-based food processing technologies are summarized. The advanced technologies aim to help the food industry solve production problems using efficient, environmentally friendly, and economical processing technologies and to guide the development of plant-based foods in the future.

3.
Sensors (Basel) ; 23(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36850378

ABSTRACT

Many studies of the ME effect have been carried out in the microwave range in connection with the possibility of creating new electronic devices. One of the main microwave ME effects is the FMR line shift in an electric field, and the purpose of this article is to compare the FMR line shift in the ME structure in an electric field for a number of ferromagnetic metals, their alloys, and YIG ferrite using various piezoelectrics. This article discusses the regimes when the bias field is directed along the main axes of the magnetic component, while, as is known, the observed effect is due only to deformation. As a result of the study, ME structures with maximum and minimum microwave ME effects were found. In addition, the "substrate effect" in the piezoelectric YIG-GGG structure is considered.

4.
Sensors (Basel) ; 24(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38203014

ABSTRACT

This article is devoted to the theory of the converse magnetoelectric (CME) effect for the longitudinal, bending, longitudinal-shear, and torsional resonance modes and its quasi-static regime. In contrast to the direct ME effect (DME), these issues have not been studied in sufficient detail in the literature. However, in a number of cases, in particular in the study of low-frequency ME antennas, the results obtained are of interest. Detailed calculations with examples were carried out for the longitudinal mode on the symmetric and asymmetric structures based on Metglas/PZT (LN); the bending mode was considered for the asymmetric free structure and structure with rigidly fixed left-end Metglas/PZT (LN); the longitudinal-shear and torsional modes were investigated for the symmetric and asymmetric free structures based on Metglas/GaAs. For the identification of the torsion mode, it was suggested to perform an experiment on the ME structure based on Metglas/bimorphic LN. All calculation results are presented in the form of graphs for the CME coefficients.

5.
Sensors (Basel) ; 22(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35808313

ABSTRACT

The article discusses the physical foundations of the application of the linear magnetoelectric (ME) effect in composites for devices in the low-frequency range, including the electromechanical resonance (EMR) region. The main theoretical expressions for the ME voltage coefficients in the case of a symmetric and asymmetric composite structure in the quasi-static and resonant modes are given. The area of EMR considered here includes longitudinal, bending, longitudinal shear, and torsional modes. Explanations are given for finding the main resonant frequencies of the modes under study. Comparison of theory and experimental results for some composites is given.

SELECTION OF CITATIONS
SEARCH DETAIL
...