Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Data Brief ; 55: 110709, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39076828

ABSTRACT

Climate change is a critical issue in the 21st century. Assessment of the impacts of climate change is beneficial for assisting advanced recommendations for adaptations. Climate change impact assessments require high quality local-scale climate scenarios. The future climate projections from Global Climate Models (GCMs) are problematic to use at local scale due to their coarse spatial and temporal resolution, and existing biases. It is important to have climate change scenarios based on the GCMs ensemble downscaled to local scale to account for inherent uncertainty in climate projections, and to have a sufficient large number of years to account for inter-annual climate variability and low frequency, but high impact, extreme climatic events. A dataset of future climate change scenarios was therefore generated at 26 representative sites across Great Britain based on the latest CMIP6 multi-model ensemble downscaled to local-scale by using a stochastic weather generator, LARS-WG 8.0. The data set consists of climate scenarios of daily weather of 1,000 realizations of typical years for a baseline, and very near (2030) and near-future (2050) climates, based on five GCMs and two emission scenarios (Shared Socioeconomic Pathways - SSPs viz. SSP2-4.5 and SSP5-8.5). A total of 15 GCMs from the CMIP6 ensemble were integrated in LARS-WG 8.0. LARS-WG downscales future climate projections from the GCMs and incorporates changes at local scale in the mean climate, climatic variability, and extreme events by modifying the statistical distributions of the weather variables at each site. Based on the performance of the GCMs over northern Europe and their climate sensitivity, a subset of five GCMs was selected, viz.; ACCESS-ESM1-5, CNRM-CM6-1, HadGEM3-GC31-LL, MPI-ESM1-2-LR and MRI-ESM2-0. The selected GCMs are evenly distributed among the full set of 15 GCMs. The use of a subset of GCMs substantially reduces computational time, while allowing assessment of uncertainties in impact studies related to uncertain future climate projections arising from GCMs. The 1000 years of daily weather for the baseline, as well as for very near and near-future climate change scenarios, are essential for estimating inter-annual variation, and for detecting low frequency, but high impact, extreme climatic events, such as heat waves, floods and droughts. The present dataset can be used as an input to climate change impact models in various fields, including, land and water resources, agriculture and food production, ecology and epidemiology, and human health and welfare. Researchers, breeders, farm managers, social and public sector leaders, and policymakers may benefit from this new dataset when undertaking impact assessments of climate change and decision support for mitigation and adaptation to climate change.

2.
Sci Total Environ ; 916: 170213, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38278226

ABSTRACT

Boreal peatlands store most of their carbon in layers deeper than 0.5 m under anaerobic conditions, where carbon dioxide and methane are produced as terminal products of organic matter degradation. Since the global warming potential of methane is much greater than that of carbon dioxide, the balance between the production rates of these gases is important for future climate predictions. Herein, we aimed to understand whether anaerobic methane oxidation (AMO) could explain the high CO2/CH4 anaerobic production ratios that are widely observed for the deeper peat layers of boreal peatlands. Furthermore, we quantified the metabolic pathways of methanogenesis to examine whether hydrogenotrophic methanogenesis is a dominant methane production pathway for the presumably recalcitrant deeper peat. To assess the CH4 cycling in deeper peat, we combined laboratory anaerobic incubations with a pathway-specific inhibitor, in situ depth patterns of stable isotopes in CH4, and 16S rRNA gene amplicon sequencing for three representative boreal peatlands in Western Siberia. We found up to a 69 % reduction in CH4 production due to AMO, which largely explained the high CO2/CH4 anaerobic production ratios and the in situ depth-related patterns of δ13C and δD in methane. The absence of acetate accumulation after inhibiting acetotrophic methanogenesis and the presence of sulfate- and nitrate-reducing anaerobic acetate oxidizers in the deeper peat indicated that these microorganisms use SO42- and NO3- as electron acceptors. Acetotrophic methanogenesis dominated net CH4 production in the deeper peat, accounting for 81 ± 13 %. Overall, anaerobic oxidation is quantitatively important for the methane cycle in the deeper layers of boreal peatlands, affecting both methane and its main precursor concentrations.


Subject(s)
Carbon Dioxide , Microbiota , Carbon Dioxide/analysis , Anaerobiosis , Methane/metabolism , Soil , RNA, Ribosomal, 16S , Acetates , Isotopes
4.
Nat Commun ; 14(1): 6028, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816707

ABSTRACT

A recent rise in the global brewery sector has increased the demand for high-quality, late summer hops. The effects of ongoing and predicted climate change on the yield and aroma of hops, however, remain largely unknown. Here, we combine meteorological measurements and model projections to assess the climate sensitivity of the yield, alpha content and cone development of European hops between 1970 and 2050 CE, when temperature increases by 1.4 °C and precipitation decreases by 24 mm. Accounting for almost 90% of all hop-growing regions, our results from Germany, the Czech Republic and Slovenia show that hop ripening started approximately 20 days earlier, production declined by almost 0.2 t/ha/year, and the alpha content decreased by circa 0.6% when comparing data before and after 1994 CE. A predicted decline in hop yield and alpha content of 4-18% and 20-31% by 2050 CE, respectively, calls for immediate adaptation measures to stabilize an ever-growing global sector.


Subject(s)
Humulus , Climate Change , Agriculture/methods , Temperature , Odorants
5.
Micromachines (Basel) ; 14(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36838010

ABSTRACT

In this article, a model of an energy harvester, the mechanical part of which is an inverted pendulum, is proposed. We investigated the stability of a linearized system. It was proven that the stabilizing control of the pendulum, based on the feedback principle, enables the stabilization of the system. We have identified the zones of stability and the amplitude-frequency characteristics. In the second part of this article, a generalization of the dynamic system for the case of the hysteresis friction in the mechanical joint is considered. The role of nonlinear effects within the design Preisach model and the phenomenological Bouc-Wen model is shown.

6.
Plants (Basel) ; 12(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771744

ABSTRACT

Pesticides are widely used in agriculture as a pest control strategy. Despite the benefits of pesticides on crop yields, the persistence of chemical residues in soil has an unintended impact on non-targeted microorganisms. In the present study, we evaluated the potential adverse effects of a mixture of fungicides (difenoconazole, epoxiconazole, and kresoxim-methyl) on soil fungal and bacterial communities, as well as the manifestation of wheat diseases. In the fungicide-treated soil, the Shannon indices of both fungal and bacterial communities decreased, whereas the Chao1 indices did not differ compared to the control soil. Among bacterial taxa, the relative abundances of Arthrobacter and Sphingomonas increased in fungicide-treated soil due to their ability to utilize fungicides and other toxic compounds. Rhizopus and plant-beneficial Chaetomium were the dominant fungal genera, with their prevalence increasing by 2-4 times in the fungicide-treated soil. The genus Fusarium, which includes phytopathogenic species, which are notably responsible for root rot, was the most abundant taxon in each of the two conditions but its relative abundance was two times lower in fungicide-treated soils, consistent with a lower level of disease incidence in plants. The prediction of metabolic pathways revealed that the soil bacterial community had a high potential for degrading various pollutants, and the soil fungal community was in a state of recovery after the application of quinone outside inhibitor (QoI) fungicides. Fungicide-treated soil was characterized by an increase in soil microbial carbon, compared with the control soil. Collectively, the obtained results suggest that the application of difenoconazole, epoxiconazole, and kresoxim-methyl is an effective approach for pest control that does not pose a hazard for the soil ecosystem in the short term. However, it is necessary to carry out additional sampling to take into account the spatio-temporal impact of this fungicide mixture on the functional properties of the soil.

7.
Int J Mol Sci ; 23(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36012579

ABSTRACT

Acute lung injury (ALI) as a model of acute respiratory distress syndrome is characterized by inflammation, complex coagulation, and hematologic abnormalities which result in the formation of fibrin-platelet microthrombi in the pulmonary vessels with the rapid development of progressive respiratory dysfunction. We hypothesize that a nebulized fibrinolytic agent, non-immunogenic staphylokinase (nSta), may be useful for ALI therapy. First, the effect of the nebulized nSta (0.2 mg/kg, 1.0 mg/kg, or 2.0 mg/kg) on the coagulogram parameters was studied in healthy rats. ALI was induced in mice by nebulized administration of lipopolysaccharide (LPS) at a dose of 10 mg/kg. nSta (0.2 mg/kg, 0.4 mg/kg or 0.6 mg/kg) was nebulized 30 min, 24 h, and 48 h after LPS administration. The level of pro-inflammatory cytokines was determined in the blood on the 8th day after LPS and nSta administration. The assessment of lung damage was based on their weighing and microscopic analysis. Fibrin/fibrinogen deposition in the lungs was determined by immunohistochemistry. After nSta nebulization in healthy rats, the fibrinogen blood level as well as activated partial thromboplastin time and prothrombin time did not change. In the nebulized ALI model, the mice showed an increase in lung weight due to their edema and rising fibrin deposition. An imbalance of proinflammatory cytokines was also found. Forty percent of mice with ALI without nSta nebulization had died. Nebulized nSta at a dose of 0.2 mg/kg reduced the severity of ALI: a decrease in interstitial edema and inflammatory infiltration was noted. At a dose of 0.4 mg/kg of nebulized nSta, the animals showed no peribronchial edema and the bronchi had an open clear lumen. At a dose of 0.6 mg/kg of nebulized nSta, the manifestations of ALI were completely eliminated. A significant dose-dependent reduction of the fibrin-positive areas in the lungs of mice with ALI was established. Nebulized nSta had a normalizing effect on the proinflammatory cytokines in blood- interleukin (IL)-1α, IL-17A, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). These data showed the effectiveness of nebulized nSta and the perspectives of its clinical usage in COVID-19 patients with acute respiratory distress syndrome (ARDS).


Subject(s)
Acute Lung Injury , COVID-19 , Respiratory Distress Syndrome , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Animals , Disease Models, Animal , Fibrin/pharmacology , Fibrinogen/therapeutic use , Lipopolysaccharides/toxicity , Lung , Metalloendopeptidases , Mice , Rats , Respiratory Distress Syndrome/drug therapy
8.
J R Soc Interface ; 19(193): 20220361, 2022 08.
Article in English | MEDLINE | ID: mdl-36000226

ABSTRACT

UK grasslands perform important environmental and economic functions, but their future productivity under climate change is uncertain. Spring hay yields from 1902 to 2016 at one site (the Park Grass Long Term Experiment) in southern England under four different fertilizer regimes were modelled in response to weather (seasonal temperature and rainfall). The modelling approach applied comprised: (1) a Bayesian model comparison to model parametrically the heteroskedasticity in a gamma likelihood function; (2) a Bayesian varying intercept multiple regression model with an autoregressive lag one process (to incorporate the effect of productivity in the previous year) of the response of hay yield to weather from 1902 to 2016. The model confirmed that warmer and drier years, specifically, autumn, winter and spring, in the twentieth and twenty-first centuries reduced yield. The model was applied to forecast future spring hay yields at Park Grass under different climate change scenarios (HadGEM2 and GISS RCP 4.5 and 8.5). This application indicated that yields are forecast to decline further between 2020 and 2080, by as much as 48-50%. These projections are specific to Park Grass, but implied a severe reduction in grassland productivity in southern England with climate change during the twenty-first century.


Subject(s)
Climate Change , Poaceae , Bayes Theorem , Poaceae/physiology , Seasons , Weather
9.
J Exp Bot ; 73(16): 5715-5729, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35728801

ABSTRACT

Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.


Subject(s)
Climate Change , Triticum , Biomass , Seasons , Temperature
10.
J Fungi (Basel) ; 8(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35330253

ABSTRACT

Fungi represent a diverse group of organisms that play an essential role in maintaining soil health and ecosystem functioning. Plant root exudates form nutrient-rich niches that harbor specific fungal communities, or so-called rhizosphere mycobiomes. The long-term application of fertilizers supplies the soil with nutrients that may override the plant-related effects on rhizosphere fungal communities. Here, we assessed the effect of contrasting fertilization regimes on the composition, diversity, and abundance of bulk soil and rhizosphere mycobiomes of potato, white mustard, and maize under NPK (mineral fertilizers) or fresh cattle manure (organic fertilizers). Mineral and organic fertilizers led to distinct fungal communities in the rhizospheres of all studied crops, and the plant-related effects on the mycobiome were overridden by the effect of fertilization. The abundances of Ascomycota and Olpidiomycota were higher under manure, while the abundances of Basidiomycota and Monoblepharomycota increased under NPK. Manure input strongly increased fungal abundance but decreased fungal diversity and the total number of species. NPK had a slight effect on fungal diversity, but significantly increased the relative abundances of fungal phytopathogens, such as Alternaria and Fusarium. Our study shows that that potential plant species effects on the abundance and diversity of the rhizosphere mycobiomes are governed by long-term fertilization. Fertilization management could therefore be used to manipulate rhizosphere fungal communities and soilborne pathogen suppressiveness.

11.
Sensors (Basel) ; 22(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35214202

ABSTRACT

The effect of an external electric field and dissipative tunneling on the spectral intensity of recombination radiation in a quantum dot with an A+ + e impurity complex (a hole localized on a neutral acceptor interacting with an electron localized in the ground state of the quantum dot) is studied in the zero-radius potential model in the adiabatic approximation. The probability of dissipative tunneling of a hole is calculated in the one-instanton approximation. A high sensitivity of the recombination radiation intensity to the strength of the external electric field and to such parameters of the surrounding matrix (dissipative tunneling parameters) as temperature, the constant of interaction with the contact medium (or the heat-bath), and the frequency of phonon modes, has been revealed. It is shown that an external electric field leads to a shift of the recombination radiation threshold by several tens of meV, and a change in the parameters of dissipative tunneling has a noticeable effect on the spectral intensity of recombination radiation. It is shown that the resonant tunneling effect manifests itself in the form of "dips" in the field dependence of the spectral intensity of recombination radiation, which occur at certain values of the external electric field strength and temperature. This opens up certain prospects for the use of the considered system "quantum dot-impurity complex A+ + e" under conditions of dissipative tunneling for the study and diagnostics of biological objects.

12.
Nat Food ; 3(7): 532-541, 2022 07.
Article in English | MEDLINE | ID: mdl-37117937

ABSTRACT

Global food security requires food production to be increased in the coming decades. The closure of any existing genetic yield gap (Yig) by genetic improvement could increase crop yield potential and global production. Here we estimated present global wheat Yig, covering all wheat-growing environments and major producers, by optimizing local wheat cultivars using the wheat model Sirius. The estimated mean global Yig was 51%, implying that global wheat production could benefit greatly from exploiting the untapped global Yig through the use of optimal cultivar designs, utilization of the vast variation available in wheat genetic resources, application of modern advanced breeding tools, and continuous improvements of crop and soil management.

13.
Biology (Basel) ; 10(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34681129

ABSTRACT

Due to its topographical position and climatic conditions, the Qinghai-Tibet Plateau possesses abundant microorganism resources. The extremophilic strain KKD1 isolated from Hoh Xil possesses strong stress tolerance, enabling it to propagate under high salinity (13%) and alkalinity (pH 10.0) conditions. In addition, KKD1 exhibits promising biocontrol activity against plant pathogens. To further explore these traits at the genomic level, we performed whole-genome sequencing and analysis. The taxonomic identification according to the average nucleotide identity based on BLAST revealed that KKD1 belongs to Bacillus halotolerans. Genetic screening of KKD1 revealed that its stress resistance mechanism depends on osmotic equilibrium, membrane transportation, and the regulation of ion balance under salt and alkaline stress. The expression of genes involved in these pathways was analyzed using real-time quantitative PCR. The presence of different gene clusters encoding antimicrobial secondary metabolites indicated the various pathways by which KKD1 suppresses phytopathogenic growth. Moreover, the lipopeptides surfactin and fengycin were identified as being significant antifungal components of KKD1. Through comparative genomics analysis, we noticed that KKD1 harbored specific genes involved in stress resistance and biocontrol, thus providing a new perspective on the genomic features of the extremophilic Bacillus species.

14.
Sci Rep ; 11(1): 20565, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663872

ABSTRACT

Representative subsets of global climate models (GCMs) are often used in climate change impact studies to account for uncertainty in ensemble climate projections. However, the effectiveness of such subsets has seldom been assessed for the estimations of either the mean or the spread of the full ensembles. We assessed two different approaches that were employed to select 5 GCMs from a 20-member ensemble of GCMs from the CMIP5 ensemble for projecting canola and spring wheat yields across Canada under RCP 4.5 and 8.5 emission scenarios in the periods 2040-2069 and 2070-2099, based on crop simulation models. Averages and spreads of the simulated crop yields using the 5-GCM subsets selected by T&P and KKZ approaches were compared with the full 20-GCM ensemble. Our results showed that the 5-GCM subsets selected by the two approaches could produce full-ensemble means with a relative absolute error of 2.9-4.7% for canola and 1.5-2.2% for spring wheat, and covers 61.8-91.1% and 66.1-80.8% of the full-ensemble spread for canola and spring wheat, respectively. Our results also demonstrated that both approaches were very likely to outperform a subset of randomly selected 5 GCMs in terms of a smaller error and a larger range.

15.
Phys Chem Chem Phys ; 23(38): 22057-22066, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34581327

ABSTRACT

We report an ab initio study on the rovibronic spectroscopy of the closed-shell diatomic molecule phosphorous mononitride, PN. The study considers the nine lowest electronic states, X 1Σ+, A 1Π, C 1Σ-, D 1Δ, E 1Σ-, a 3Σ+, b 3Π, d 3Δ and e 3Σ- using high level electronic structure theory and accurate nuclear motion calculations. The ab initio data cover 9 potential energy, 14 spin-orbit coupling, 7 electronic angular momentum coupling, 9 electric dipole moment and 8 transition dipole moment curves. The Duo nuclear motion program is used to solve the coupled nuclear motion Schrödinger equations for these nine electronic states and to simulate rovibronic absorption spectra of 31P14N for different temperatures, which are compared to available spectroscopic studies. Lifetimes for all states are calculated and compared to previous results from the literature. The calculated lifetime of the A1Π state shows good agreement with an experimental value from the literature, which is an important quality indicator for the ab initio A-X transition dipole moment.

16.
Eur J Agron ; 128: None, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34345158

ABSTRACT

The productivity of permanent temperate cut grasslands is mainly driven by weather, soil characteristics, botanical composition and management. To adapt management to climate change, adjusting the cutting dates to reflect earlier onset of growth and expansion of the vegetation period is particularly important. Simulations of cut grassland productivity under climate change scenarios demands management settings to be dynamically derived from actual plant development rather than using static values derived from current management operations. This is even more important in the alpine region, where the predicted temperature increase is twice as high as compared to the global or Northern Hemispheric average. For this purpose, we developed a dynamic management module that provides timing of cutting and manuring events when running the biogeochemical model LandscapeDNDC. We derived the dynamic management rules from long-term harvest measurements and monitoring data collected at pre-alpine grassland sites located in S-Germany and belonging to the TERENO monitoring network. We applied the management module for simulations of two grassland sites covering the period 2011-2100 and driven by scenarios that reflect the two representative concentration pathways (RCP) 4.5 and 8.5 and evaluated yield developments of different management regimes. The management module was able to represent timing of current management operations in high agreement with several years of field observations (r² > 0.88). Even more, the shift of the first cutting dates scaled to a +1 °C temperature increase simulated with the climate change scenarios (-9.1 to -17.1 days) compared well to the shift recorded by the German Weather Service (DWD) in the study area from 1991-2016 (-9.4 to -14.0 days). In total, the shift in cutting dates and expansion of the growing season resulted in 1-2 additional cuts per year until 2100. Thereby, climate change increased yields of up to 6 % and 15 % in the RCP 4.5 and 8.5 scenarios with highest increases mainly found for dynamically adapted grassland management going along with increasing fertilization rates. In contrast, no or only minor yield increases were associated with simulations restricted to fertilization rates of 170 kg N ha-1 yr-1 as required by national legislations. Our study also shows that yields significantly decreased in drought years, when soil moisture is limiting plant growth but due to comparable high precipitation and water holding capacity of soils, this was observed mainly in the RCP 8.5 scenario in the last decades of the century.

17.
R Soc Open Sci ; 8(6): 201669, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34150311

ABSTRACT

Under future CMIP5 climate change scenarios for 2050, an increase in wheat yield of about 10% is predicted in Great Britain (GB) as a result of the combined effect of CO2 fertilization and a shift in phenology. Compared to the present day, crops escape increases in the climate impacts of drought and heat stresses on grain yield by developing before these stresses can occur. In the future, yield losses from water stress over a growing season will remain about the same across Great Britain with losses reaching around 20% of potential yield, while losses from drought around flowering will decrease and account for about 9% of water limited yield. Yield losses from heat stress around flowering will remain negligible in the future. These conclusions are drawn from a modelling study based on the response of the Sirius wheat simulation model to local-scale 2050-climate scenarios derived from 19 Global Climate Models from the CMIP5 ensemble at 25 locations representing current or potential wheat-growing areas in GB. However, depending on susceptibility to water stress, substantial interannual yield variation between locations is predicted, in some cases suggesting low wheat yield stability. For this reason, local-scale studies should be performed to evaluate uncertainties in yield prediction related to future weather patterns.

18.
J Environ Manage ; 294: 113018, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34144322

ABSTRACT

Manure inputs into soil strongly affect soil microbial communities leading to shifts in microbial diversity and activity. It is still not clear whether these effects are caused mainly by the survival of microbes introduced with manure or by activation of the soil-borne microbiome. Here, we investigated how the soil microbiome was changed after the introduction of fresh farmyard cattle manure, and which microorganisms originating from manure survived in soil. Manure addition led to a strong increase in soil microbial biomass, gene copies abundances, respiration activity, and diversity. High-throughput sequencing analysis showed that higher microbial diversity in manured soil was caused mainly by activation of 113 soil-borne microbial genera which were mostly minor taxa in not-fertilized soil. Two weeks after manure input, 78% of the manure-associated genera were not detected anymore. Only 15 of 237 prokaryotic genera that originated from manure survived for 144 days in soil, and only 8 of them (primarily representatives of Clostridia class) were found in manured soil after winter. Thus, an increase in microbial biomass and diversity after manure input is caused mainly by activation of soil-borne microbial communities, while most exogenous microbes from manure do not survive in soil conditions after few months.


Subject(s)
Manure , Microbiota , Animals , Cattle , Fertilizers/analysis , Microbiota/genetics , Soil , Soil Microbiology
19.
J R Soc Interface ; 18(179): 20210250, 2021 06.
Article in English | MEDLINE | ID: mdl-34129791

ABSTRACT

Climate change effects on UK winter wheat grain yield are complex: warmer temperature, negative; greater carbon dioxide (CO2) concentration, positive; but other environmental variables and their timing also affect yield. In the absence of long-term experiments where temperature and CO2 concentration were manipulated separately, we applied the crop simulation model Sirius with long-term daily meteorological data (1892-2016) for Rothamsted, Hertfordshire, UK (2007-2016 mean growing season temperature 1.03°C warmer than 1892-1991), and CO2 concentration over this period, to investigate the separate effects of historic CO2 and weather on simulated grain yield in three wheat cultivars of the modern era. We show a slight decline in simulated yield over the period 1892-2016 from the effect of weather (daily temperature, rainfall and sunshine hours) at fixed CO2 (294.50 ppm, 1892 reference value), but a maximum 9.4% increase when accounting for increasing atmospheric CO2 (from 294.50 to 404.21 ppm), differing slightly among cultivars. Notwithstanding considerable inter-annual variation, the slight yield decline at 294.50 ppm CO2 over this 125-year period from the historic weather simulations for Rothamsted agrees with the expected decline from temperature increase alone, but the positive yield trend with actual CO2 values does not match the recent stagnation in UK wheat yield.


Subject(s)
Carbon Dioxide , Triticum , Climate Change , United Kingdom , Weather
20.
Int J Mol Sci ; 22(7)2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33810614

ABSTRACT

We studied cell proliferation in the postnatal mouse brain between the ages of 2 and 30 months and identified four compartments with different densities of proliferating cells. The first identified compartment corresponds to the postnatal pallial neurogenic (PPN) zone in the telencephalon; the second to the subpallial postnatal neurogenic (SPPN) zone in the telencephalon; the third to the white matter bundles in the telencephalon; and the fourth to all brain parts outside of the other three compartments. We estimated that about 3.4 million new cells, including 0.8 million in the subgranular zone (SGZ) in the hippocampus, are produced in the PPN zone. About 21 million new cells, including 10 million in the subependymal zone (SEZ) in the lateral walls of the lateral ventricle and 2.7 million in the rostral migratory stream (RMS), are produced in the SPPN zone. The third and fourth compartments together produced about 31 million new cells. The analysis of cell proliferation in neurogenic zones shows that postnatal neurogenesis is the direct continuation of developmental neurogenesis in the telencephalon and that adult neurogenesis has characteristics of the late developmental process. As a developmental process, adult neurogenesis supports only compensatory regeneration, which is very inefficient.


Subject(s)
Brain/growth & development , Cell Proliferation , Hippocampus/growth & development , Telencephalon/growth & development , Animals , Brain Mapping , Cell Movement , Lateral Ventricles/diagnostic imaging , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neurogenesis , Neurons/metabolism , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...