Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cancer Res Commun ; 4(4): 1004-1015, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38592450

ABSTRACT

Asbestos and BAP1 germline mutations are risk factors for malignant mesothelioma (MM). While it is well accepted that amphibole asbestos is carcinogenic, the role of serpentine (chrysotile) asbestos in MM has been debated. To address this controversy, we assessed whether minimal exposure to chrysotile could significantly increase the incidence and rate of MM onset in germline Bap1-mutant mice. With either crocidolite or chrysotile, and at each dose tested, MMs occurred at a significantly higher rate and earlier onset time in Bap1-mutant mice than in wild-type littermates. To explore the role of gene-environment interactions in MMs from Bap1-mutant mice, we investigated proinflammatory and protumorigenic factors and the tumor immune microenvironment (TIME). IHC and immunofluorescence staining showed an increased number of macrophages in granulomatous lesions and MMs. The relative number of CD163-positive (CD163+) M2 macrophages in chrysotile-induced MMs was consistently greater than in crocidolite-induced MMs, suggesting that chrysotile induces a more profound immunosuppressive response that creates favorable conditions for evading immune surveillance. MMs from Bap1-mutant mice showed upregulation of CD39/CD73-adenosine and C-C motif chemokine ligand 2 (Ccl2)/C-C motif chemokine receptor 2 (Ccr2) pathways, which together with upregulation of IL6 and IL10, promoted an immunosuppressive TIME, partly by attracting M2 macrophages. Interrogation of published human MM RNA sequencing (RNA-seq) data implicated these same immunosuppressive pathways and connections with CD163+ M2 macrophages. These findings indicate that increased M2 macrophages, along with upregulated CD39/CD73-adenosine and Ccl2/Ccr2 pathways, contribute to an immunosuppressive TIME in chrysotile-induced MMs of Bap1-mutant mice, suggesting that immunotherapeutic strategies targeting protumorigenic immune pathways could be beneficial in human BAP1 mutation carriers who develop MM. SIGNIFICANCE: We show that germline Bap1-mutant mice have enhanced susceptibility to MM upon minimal exposure to chrysotile asbestos, not only amphibole fibers. Chrysotile induced a more profound immune tumor response than crocidolite in Bap1-mutant mice by upregulating CD39/CD73-adenosine and Ccl2/Ccr2 pathways and recruiting more M2 macrophages, which together contributed to an immunosuppressive tumor microenvironment. Interrogation of human MM RNA-seq data revealed interconnected immunosuppressive pathways consistent with our mouse findings.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Neoplasms, Mesothelial , Humans , Animals , Mice , Asbestos, Serpentine , Asbestos, Amphibole , Asbestos, Crocidolite/toxicity , Tumor Microenvironment/genetics , Mesothelioma/chemically induced , Adenosine , Immunosuppressive Agents , Germ Cells
2.
Carcinogenesis ; 43(12): 1137-1148, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36355620

ABSTRACT

Malignant mesothelioma (MM) is an incurable cancer of the serosal lining that is often caused by exposure to asbestos. Therefore, novel agents for the prevention and treatment of this disease are urgently needed. Asbestos induces the release of pro-inflammatory cytokines such as IL-1ß and IL-6, which play a role in MM development. IL-6 is a component of the JAK-STAT3 pathway that contributes to inflammation-associated tumorigenesis. Glycoprotein 130 (gp130), the signal transducer of this signaling axis, is an attractive drug target because of its role in promoting neoplasia via the activation of downstream STAT3 signaling. The anticancer drug, SC144, inhibits the interaction of gp130 with the IL-6 receptor (IL6R), effectively blunting signaling from this inflammatory axis. To test whether the inflammation-related release of IL-6 plays a role in the formation of MM, we evaluated the ability of SC144 to inhibit asbestos-induced carcinogenesis in a mouse model. The ability of sulindac and anakinra, an IL6R antagonist/positive control, to inhibit MM formation in this model was tested in parallel. Asbestos-exposed Nf2+/-;Cdkn2a+/- mice treated with SC144, sulindac or anakinra showed significantly prolonged survival compared to asbestos-exposed vehicle-treated mice. STAT3 activity was markedly decreased in MM specimens from SC144-treated mice. Furthermore, SC144 inhibited STAT3 activation by IL-6 in cultured normal mesothelial cells, and in vitro treatment of MM cells with SC144 markedly decreased the expression of STAT3 target genes. The emerging availability of newer, more potent SC144 analogs showing improved pharmacokinetic properties holds promise for future trials, benefitting individuals at high risk of this disease.


Subject(s)
Asbestos , Mesothelioma, Malignant , Mesothelioma , Mice , Animals , Interleukin-6/genetics , Sulindac , Interleukin 1 Receptor Antagonist Protein/adverse effects , Cytokine Receptor gp130/metabolism , Asbestos/toxicity , Carcinogenesis , Inflammation/drug therapy , Inflammation/pathology , Chemoprevention , Mesothelioma/chemically induced , Mesothelioma/prevention & control , Mesothelioma/genetics
3.
Data Brief ; 45: 108743, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36426057

ABSTRACT

The data presented in this article are companion materials to our manuscript titled "BAP1 maintains HIF-dependent interferon beta induction to suppress tumor growth in clear cell renal cell carcinoma" (Langbein et al., 2022), where we investigated the downstream effects of BAP1 (BRCA1-associated protein 1) expression in clear cell renal cell carcinoma (ccRCC) cell lines and mouse xenograft models. In the manuscript, we showed that BAP1 upregulates STING (stimulator of interferon genes) expression and activity in ccRCC cells, leading to IFN-ß transcription and activation of interferon stimulated gene factor 3 (ISGF3), the transcription factor that mediates the effects of type I interferons (IFNs). Here, we suppressed additional components of the type I IFN pathway, including IRF9 (a component of ISGF3), IFNAR1 (the type I IFN receptor), and STING (a stimulator of IFN production) by shRNA to investigate their involvement in BAP1-mediated upregulation of ISGF3 activity. We also inhibited extracellular IFN-ß via neutralizing antibody treatment in BAP1-expressing cells to ascertain the role of the secreted cytokine in this pathway. ISGF3 activity was assessed by western blot analysis and qPCR measurement of its transcriptional targets. To examine the relevance of our observations in another model system, we characterized primary kidney cells from WT and Bap1 fl/fl mice by cytokeratin 8 immunohistochemistry and examined the effect of Bap1 knockout on Sting protein expression. Finally, we treated mice bearing BAP1 knockdown xenografted tumors with diABZI, a STING agonist, and measured immune cell recruitment via CD45 immunohistochemistry. These data can serve as a starting point for further investigation on the roles of BAP1 and other tumor suppressor genes in interferon pathway regulation.

4.
Cancers (Basel) ; 14(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36428720

ABSTRACT

Malignant pleural mesothelioma (MPM), an aggressive cancer of the mesothelial cells lining the pleural cavity, lacks effective treatments. Multiple somatic mutations and copy number losses in tumor suppressor genes (TSGs) BAP1, CDKN2A/B, and NF2 are frequently associated with MPM. The impact of single versus multiple genomic alterations of TSG on MPM biology, the immune tumor microenvironment, clinical outcomes, and treatment responses are unknown. Tumors with genomic alterations in BAP1 alone were associated with a longer overall patient survival rate compared to tumors with CDKN2A/B and/or NF2 alterations with or without BAP1 and formed a distinct immunogenic subtype with altered transcription factor and pathway activity patterns. CDKN2A/B genomic alterations consistently contributed to an adverse clinical outcome. Since the genomic alterations of only BAP1 was associated with the PD-1 therapy response signature and higher LAG3 and VISTA gene expression, it might be a candidate marker for immune checkpoint blockade therapy. Our results on the impact of TSG genotypes on MPM and the correlations between TSG alterations and molecular pathways provide a foundation for developing individualized MPM therapies.

5.
Cancer Lett ; 547: 215885, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35995140

ABSTRACT

BRCA1-associated protein 1 (BAP1) is a deubiquitinase that is mutated in 10-15% of clear cell renal cell carcinomas (ccRCC). Despite the association between BAP1 loss and poor clinical outcome, the critical tumor suppressor function(s) of BAP1 in ccRCC remains unclear. Previously, we found that hypoxia-inducible factor 2α (HIF2α) and BAP1 activate interferon-stimulated gene factor 3 (ISGF3), a transcription factor activated by type I interferons and a tumor suppressor in ccRCC xenograft models. Here, we aimed to determine the mechanism(s) through which HIF and BAP1 regulate ISGF3. We found that in ccRCC cells, loss of the von Hippel-Lindau tumor suppressor (VHL) activated interferon beta (IFN-ß) expression in a HIF2α-dependent manner. IFN-ß was required for ISGF3 activation and suppressed the growth of Ren-02 tumors in xenografts. BAP1 enhanced the expression of IFN-ß and stimulator of interferon genes (STING), both of which activate ISGF3. Both ISGF3 overexpression and STING agonist treatment increased ISGF3 activity and suppressed BAP1-deficient tumor growth in Ren-02 xenografts. Our results indicate that BAP1 loss reduces type I interferon signaling, and reactivating this pathway may be a novel therapeutic strategy for treating ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interferon-beta/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
6.
Mol Cancer Res ; 20(5): 699-711, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35082167

ABSTRACT

Because loss of the NF2 tumor suppressor gene results in p21-activated kinase (Pak) activation, PAK inhibitors hold promise for the treatment of NF2-deficient tumors. To test this possibility, we asked if loss of Pak2, a highly expressed group I PAK member, affects the development of malignant mesothelioma in Nf2;Cdkn2a-deficient (NC) mice and the growth properties of NC mesothelioma cells in culture. In vivo, deletion of Pak2 resulted in a markedly decreased incidence and delayed onset of both pleural and peritoneal malignant mesotheliomas in NC mice. In vitro, Pak2 deletion decreased malignant mesothelioma cell viability, migration, clonogenicity, and spheroid formation. RNA-sequencing analysis demonstrated downregulated expression of Hedgehog and Wnt pathway genes in NC;Pak2-/- mesothelioma cells versus NC;Pak2+/+ mesothelioma cells. Targeting of the Hedgehog signaling component Gli1 or its target gene Myc inhibited cell viability and spheroid formation in NC;P+/+ mesothelioma cells. Kinome profiling uncovered kinase changes indicative of EMT in NC;Pak2-/- mesothelioma cells, suggesting that Pak2-deficient malignant mesotheliomas can adapt by reprogramming their kinome in the absence of Pak activity. The identification of such compensatory pathways offers opportunities for rational combination therapies to circumvent resistance to anti-PAK drugs. IMPLICATIONS: We provide evidence supporting a role for PAK inhibitors in treating NF2-deficient tumors. NF2-deficient tumors lacking Pak2 eventually adapt by kinome reprogramming, presenting opportunities for combination therapies to bypass anti-PAK drug resistance.


Subject(s)
Mesothelioma, Malignant , Mesothelioma , Animals , Hedgehog Proteins/genetics , Humans , Mesothelioma/drug therapy , Mesothelioma/genetics , Mice , Wnt Signaling Pathway , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
7.
Hum Mol Genet ; 30(18): 1750-1761, 2021 08 28.
Article in English | MEDLINE | ID: mdl-34008015

ABSTRACT

There is irrefutable evidence that germline BRCA1-associated protein 1 gene (BAP1) mutations contribute to malignant mesothelioma (MM) susceptibility. However, BAP1 mutations are not found in all cases with evidence of familial MM or in other high-risk cancer families affected by various cancers, including MM. The goal of this study was to use whole genome sequencing (WGS) to determine the frequency and types of germline gene variants occurring in 12 MM patients who were selected from a series of 141 asbestos-exposed MM patients with a family history of cancer but without a germline BAP1 mutation. WGS was also performed on two MM cases, a proband and sibling, from a previously reported family with multiple cases of MM without the inheritance of a predisposing BAP1 mutation. Altogether, germline DNA sequencing variants were identified in 21 cancer-related genes in 10 of the 13 probands. Germline indel, splice site and missense mutations and two large deletions were identified. Among the 13 MM index cases, 6 (46%) exhibited one or more predicted pathogenic mutations. Affected genes encode proteins involved in DNA repair (ATM, ATR, BRCA2, BRIP1, CHEK2, MLH3, MUTYH, POLE, POLE4, POLQ and XRCC1), chromatin modification (ARID1B, DNMT3A, JARID2 and SETD1B) or other cellular pathways: leucine-rich repeat kinase 2 gene (LRRK2) (two cases) and MSH4. Notably, somatic truncating mutation or deletions of LRRK2 were occasionally found in MMs in The Cancer Genome Atlas, and the expression of LRRK2 was undetectable or downregulated in a majority of primary MMs and MM cell lines we examined, implying that loss of LRRK2 expression is a newly recognized tumor suppressor alteration in MM.


Subject(s)
Genetic Predisposition to Disease , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mesothelioma, Malignant/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Adult , Humans , Male , Risk Factors
8.
Mol Cancer Res ; 19(7): 1099-1112, 2021 07.
Article in English | MEDLINE | ID: mdl-33731362

ABSTRACT

BAP1 is an ubiquitin hydrolase whose deubiquitinase activity is mediated by polycomb group-like protein ASXL2. Cancer-related BAP1 mutations/deletions lead to loss-of-function by targeting the catalytic ubiquitin C-terminal hydrolase (UCH) or UCH37-like domain (ULD) domains of BAP1, and the latter disrupts binding to ASXL2, an obligate partner for BAP1 enzymatic activity. However, the biochemical and biophysical properties of domains involved in forming the enzymatically active complex are unknown. Here, we report the molecular dynamics, kinetics, and stoichiometry of these interactions. We demonstrate that interactions between BAP1 and ASXL2 are direct, specific, and stable to biochemical and biophysical manipulations as detected by isothermal titration calorimetry (ITC), GST association, and optical biosensor assays. Association of the ASXL2-AB box greatly stimulates BAP1 activity. A stable ternary complex is formed, comprised of the BAP1-UCH, BAP1-ULD, and ASXL2-AB domains. Stoichiometric analysis revealed that one molecule of the ULD domain directly interacts with one molecule of the AB box. Real-time kinetic analysis of the ULD/AB protein complex to the BAP1-UCH domain, based on surface plasmon resonance, indicated that formation of the ULD/AB complex with the UCH domain is a single-step event with fast association and slow dissociation rates. In vitro experiments validated in cells that the ASXL-AB box directly regulates BAP1 activity. IMPLICATIONS: Collectively, these data elucidate molecular interactions between specific protein domains regulating BAP1 deubiquitinase activity, thus establishing a foundation for small-molecule approaches to reactivate latent wild-type BAP1 catalytic activity in BAP1-mutant cancers.


Subject(s)
Allosteric Regulation , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Amino Acid Sequence , Animals , Binding Sites/genetics , HEK293 Cells , Humans , Kinetics , Models, Molecular , Protein Binding , Protein Domains , Repressor Proteins/chemistry , Repressor Proteins/genetics , Sequence Homology, Amino Acid , Sf9 Cells , Spodoptera , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Ubiquitin/metabolism , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/genetics
9.
Clin Cancer Res ; 27(4): 1200-1213, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33203643

ABSTRACT

PURPOSE: Receptor-interacting protein kinase 3 (RIPK3) phosphorylates effector molecule MLKL to trigger necroptosis. Although RIPK3 loss is seen in several human cancers, its role in malignant mesothelioma is unknown. This study aimed to determine whether RIPK3 functions as a potential tumor suppressor to limit development of malignant mesothelioma. EXPERIMENTAL DESIGN: RIPK3 expression was examined in 66 malignant mesothelioma tumors and cell lines. Promoter methylation and DNMT1 siRNA studies were performed to assess the mode of RIPK3 silencing in RIPK3-deficient malignant mesothelioma cells. Restoration of RIPK3 expression in RIPK3-negative malignant mesothelioma cells, either by treatment with 5-aza-2'-deoxycytidine or lentiviral expression of cDNA, was performed to assess effects on cell viability, necrosis, and chemosensitization. RESULTS: Loss of RIPK3 expression was observed in 42/66 (63%) primary malignant mesotheliomas and malignant mesothelioma cell lines, and RT-PCR analysis demonstrated that downregulation occurs at the transcriptional level, consistent with epigenetic silencing. RIPK3-negative malignant mesothelioma cells treated with 5-aza-2'-deoxycytidine resulted in reexpression of RIPK3 and chemosensitization. Ectopic expression of RIPK3 also resulted in chemosensitization and led to necroptosis, the latter demonstrated by phosphorylation of downstream target MLKL and confirmed by rescue experiments. Mining of RIPK3 expression and survival outcomes among patients with malignant mesothelioma available from The Cancer Genome Atlas repository revealed that promoter methylation of RIPK3 is associated with reduced RIPK3 expression and poor prognosis. CONCLUSIONS: These data suggest that RIPK3 acts as a tumor suppressor in malignant mesothelioma by triggering necroptosis and that epigenetic silencing of RIPK3 by DNA methylation impairs necroptosis and contributes to chemoresistance and poor survival in this incurable disease.


Subject(s)
Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Mesothelioma, Malignant/drug therapy , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Methylation , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Kaplan-Meier Estimate , Male , Mesothelioma, Malignant/genetics , Mesothelioma, Malignant/mortality , Mesothelioma, Malignant/pathology , Mice , Middle Aged , Necroptosis/genetics , Promoter Regions, Genetic/genetics , Xenograft Model Antitumor Assays
10.
Sci Rep ; 10(1): 15837, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32985581

ABSTRACT

The Dlx5 homeobox gene was first implicated as an oncogene in a T-ALL mouse model expressing myristoylated (Myr) Akt2. Furthermore, overexpression of Dlx5 was sufficient to drive T-ALL in mice by directly activating Akt and Notch signaling. These findings implied that Akt2 cooperates with Dlx5 in T-cell lymphomagenesis. To test this hypothesis, Lck-Dlx5;Lck-MyrAkt2 transgenic mice were generated. MyrAkt2 synergized with Dlx5 to greatly accelerate and enhance the dissemination of T-lymphomagenesis. RNA-seq analysis performed on lymphomas from Lck-Dlx5;Lck-MyrAkt mice revealed upregulation of genes involved in the Wnt and cholesterol biosynthesis pathways. Combined RNA-seq and ChIP-seq analysis of lymphomas from Lck-Dlx5;Lck-MyrAkt mice demonstrated that ß-catenin directly regulates genes involved in sterol regulatory element binding transcription factor 2 (Srebf2)-cholesterol synthesis. These lymphoma cells had high Lef1 levels and were highly sensitive to ß-catenin and Srebf2-cholesterol synthesis inhibitors. Similarly, human T-ALL cell lines with activated NOTCH and AKT and elevated LEF1 levels were sensitive to inhibition of ß-catenin and cholesterol pathways. Furthermore, LEF1 expression positively correlated with expression of genes involved in the cholesterol synthesis pathway in primary human T-ALL specimens. Together, these data suggest that targeting ß-catenin and/or cholesterol biosynthesis, together with AKT, could have therapeutic efficacy in a subset of T-ALL patients.


Subject(s)
Cholesterol/biosynthesis , Homeodomain Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Proto-Oncogene Proteins c-akt/metabolism , T-Lymphocytes/metabolism , Wnt Signaling Pathway , Animals , Cell Line, Tumor , Humans , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction , beta Catenin/antagonists & inhibitors , beta Catenin/metabolism
11.
Cancer Res ; 79(16): 4113-4123, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31151962

ABSTRACT

Pleural malignant mesothelioma is a therapy-resistant cancer affecting the serosal lining of the thoracic cavity. Mutations/deletions of BAP1, CDKN2A, and NF2 are the most frequent genetic lesions in human malignant mesothelioma. We introduced various combinations of these deletions in the pleura of conditional knockout (CKO) mice, focusing on the contribution of Bap1 loss. While homozygous CKO of Bap1, Cdkn2a, or Nf2 alone gave rise to few or no malignant mesotheliomas, inactivation of Bap1 cooperated with loss of either Nf2 or Cdkn2a to drive development of malignant mesothelioma in approximately 20% of double-CKO mice, and a high incidence (22/26, 85%) of malignant mesotheliomas was observed in Bap1;Nf2;Cdkn2a (triple)-CKO mice. Malignant mesothelioma onset was rapid in triple-CKO mice, with a median survival of only 12 weeks, and malignant mesotheliomas from these mice were consistently high-grade and invasive. Adenoviral-Cre treatment of normal mesothelial cells from Bap1;Nf2;Cdkn2a CKO mice, but not from mice with knockout of one or any two of these genes, resulted in robust spheroid formation in vitro, suggesting that mesothelial cells from Bap1;Nf2;Cdkn2a mice have stem cell-like potential. RNA-seq analysis of malignant mesotheliomas from triple-CKO mice revealed enrichment of genes transcriptionally regulated by the polycomb repressive complex 2 (PRC2) and others previously implicated in known Bap1-related cellular processes. These data demonstrate that somatic inactivation of Bap1, Nf2, and Cdkn2a results in rapid, aggressive malignant mesotheliomas, and that deletion of Bap1 contributes to tumor development, in part, by loss of PRC2-mediated repression of tumorigenic target genes and by acquisition of stem cell potential, suggesting a potential avenue for therapeutic intervention. SIGNIFICANCE: Combinatorial deletions of Bap1, Nf2, and Cdkn2a result in aggressive mesotheliomas, with Bap1 loss contributing to tumorigenesis by circumventing PRC2-mediated repression of oncogenic target genes.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/genetics , Lung Neoplasms/pathology , Mesothelioma/pathology , Neurofibromin 2/genetics , Pleural Neoplasms/pathology , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Animals , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Mesothelioma/genetics , Mesothelioma, Malignant , Mice, Knockout , Neurofibromin 2/metabolism , Pleural Neoplasms/genetics , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism
12.
J Cell Physiol ; 233(11): 8952-8961, 2018 11.
Article in English | MEDLINE | ID: mdl-29904909

ABSTRACT

Malignant mesothelioma (MM) is a therapy-resistant cancer arising primarily from the lining of the pleural and peritoneal cavities. The most frequently altered genes in human MM are cyclin-dependent kinase inhibitor 2A (CDKN2A), which encodes components of the p53 (p14ARF) and RB (p16INK4A) pathways, BRCA1-associated protein 1 (BAP1), and neurofibromatosis 2 (NF2). Furthermore, the p53 gene (TP53) itself is mutated in ~15% of MMs. In many MMs, the PI3K-PTEN-AKT-mTOR signaling node is hyperactivated, which contributes to tumor cell survival and therapeutic resistance. Here, we demonstrate that the inactivation of both Tp53 and Pten in the mouse mesothelium is sufficient to rapidly drive aggressive MMs. PtenL/L ;Tp53L/L mice injected intraperitoneally or intrapleurally with adenovirus-expressing Cre recombinase developed high rates of peritoneal and pleural MMs (92% of mice with a median latency of 9.4 weeks and 56% of mice with a median latency of 19.3 weeks, respectively). MM cells from these mice showed consistent activation of Akt-mTor signaling, chromosome breakage or aneuploidy, and upregulation of Myc; occasional downregulation of Bap1 was also observed. Collectively, these findings suggest that when Pten and Tp53 are lost in combination in mesothelial cells, DNA damage is not adequately repaired and genomic instability is widespread, whereas the activation of Akt due to Pten loss protects genomically damaged cells from apoptosis, thereby increasing the likelihood of tumor formation. Additionally, the mining of an online dataset (The Cancer Genome Atlas) revealed codeletions of PTEN and TP53 and/or CDKN2A/p14ARF in ~25% of human MMs, indicating that cooperative losses of these genes contribute to the development of a significant proportion of these aggressive neoplasms and suggesting key target pathways for therapeutic intervention.


Subject(s)
Lung Neoplasms/genetics , Mesothelioma/genetics , PTEN Phosphohydrolase/genetics , Pleural Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Animals , Carcinogenesis/genetics , Cell Proliferation/genetics , Disease Models, Animal , Humans , Lung Neoplasms/pathology , Mesothelioma/pathology , Mesothelioma, Malignant , Mice , PTEN Phosphohydrolase/antagonists & inhibitors , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/pathology , Pleural Neoplasms/pathology , Signal Transduction , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
13.
Am J Cancer Res ; 7(8): 1724-1737, 2017.
Article in English | MEDLINE | ID: mdl-28861328

ABSTRACT

Clinical management of malignant mesothelioma (MM) is very challenging due to marked resistance of this tumor to chemotherapy. Various mechanisms lead to a less than ideal drug concentration inside of MM cells, diminishing cytotoxicity. Consequently, single cytotoxic drugs achieve very modest response rates in MM patients, and combination regimens using standard and novel therapies have achieved only limited improvement in overall survival. Here, we demonstrate that MYC has either proliferative or pro-survival effects in MM cells during normal or stressed conditions, respectively. A MYC inhibitor 10058-F4 reduced MM cell proliferation via down regulation of cyclin D. Under serum starvation conditions, MM cells became quiescent, and the addition of MYC inhibitors triggered apoptosis in the resting MM cells. We also found that high concentrations of the PAK inhibitor PF3758309 killed MM cells, but the drug had only cytostatic effects at lower concentrations. These quiescent cells underwent apoptosis upon pharmacological inhibition of MYC. A novel MYC inhibitor KJ-Pyr-9 and a newer PAK inhibitor, FRAX597, also demonstrated marked cytotoxic cooperativity. Collectively, these findings demonstrate that targeting of MYC can sensitize MM cells and provide rationale for inhibition of MYC and PAK as a novel combinatory regimen for the treatment of this otherwise therapy-resistant, clinically incurable malignancy.

14.
Oncotarget ; 8(9): 14941-14956, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28122332

ABSTRACT

Homeobox genes play a critical role in embryonic development, but they have also been implicated in cancer through mechanisms that are largely unknown. While not expressed during normal T-cell development, homeobox transcription factor genes can be reactivated via recurrent chromosomal rearrangements in human T-cell acute leukemia/lymphoma (T-ALL), a malignancy often associated with activated Notch and Akt signaling. To address how epigenetic reprogramming via an activated homeobox gene might contribute to T-lymphomagenesis, we investigated a transgenic mouse model with thymocyte-specific overexpression of the Dlx5 homeobox gene. We demonstrate for the first time that Dlx5 induces T-cell lymphomas with high penetrance. Integrated ChIP-seq and mRNA microarray analyses identified Notch1/3 and Irs2 as direct transcriptional targets of Dlx5, a gene signature unique to lymphomas from Lck-Dlx5 mice as compared to T-cell lymphomas from Lck-MyrAkt2 mice, which were previously reported by our group. Moreover, promoter/enhancer studies confirmed that Dlx5 directly transactivates Notch expression. Notch1/3 expression and Irs2-induced Akt signaling were upregulated throughout early stages of T-cell development, which promoted cell survival during ß-selection of T lymphocytes. Dlx5 was required for tumor maintenance via its activation of Notch and Akt, as tumor cells were highly sensitive to Notch and Akt inhibitors. Together, these findings provide unbiased genetic and mechanistic evidence that Dlx5 acts as an oncogene when aberrantly expressed in T cells, and that it is a novel discovery that Notch is a direct target of Dlx5. These experimental findings provide mechanistic insights about how reactivation of the Dlx5 gene can drive T-ALL by aberrant epigenetic reprogramming of the T-cell genome.


Subject(s)
Gene Expression Regulation, Neoplastic , Homeodomain Proteins/physiology , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/physiology , Lymphoma, T-Cell/pathology , Proto-Oncogene Proteins c-akt/physiology , Receptor, Notch1/genetics , Animals , Apoptosis , Cell Proliferation , Humans , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/metabolism , Mice , Mice, Transgenic , Promoter Regions, Genetic , Signal Transduction , Transcriptional Activation , Tumor Cells, Cultured
15.
Oncotarget ; 8(11): 17628-17642, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-27682873

ABSTRACT

Tumor suppressor genes and their effector pathways have been identified for many dominantly heritable cancers, enabling efforts to intervene early in the course of disease. Our approach on the subject of early intervention was to investigate gene expression patterns of morphologically normal "one-hit" cells before they become hemizygous or homozygous for the inherited mutant gene which is usually required for tumor formation. Here, we studied histologically non-transformed renal epithelial cells from patients with inherited disorders that predispose to renal tumors, including von Hippel-Lindau (VHL) disease and Tuberous Sclerosis (TSC). As controls, we studied histologically normal cells from non-cancerous renal epithelium of patients with sporadic clear cell renal cell carcinoma (ccRCC). Gene expression analyses of VHLmut/wt or TSC1/2mut/wt versus wild-type (WT) cells revealed transcriptomic alterations previously implicated in the transition to precancerous renal lesions. For example, the gene expression changes in VHLmut/wt cells were consistent with activation of the hypoxia response, associated, in part, with the "Warburg effect". Knockdown of any remaining VHL mRNA using shRNA induced secondary expression changes, such as activation of NFκB and interferon pathways, that are fundamentally important in the development of RCC. We posit that this is a general pattern of hereditary cancer predisposition, wherein haploinsufficiency for VHL or TSC1/2, or potentially other tumor susceptibility genes, is sufficient to promote development of early lesions, while cancer results from inactivation of the remaining normal allele. The gene expression changes identified here are related to the metabolic basis of renal cancer and may constitute suitable targets for early intervention.


Subject(s)
Calcium-Binding Proteins/genetics , Genetic Predisposition to Disease/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Carcinoma, Renal Cell/genetics , Cell Line, Tumor , Gene Expression Profiling , Gene Knockdown Techniques , Haploinsufficiency , Heterozygote , Humans , Immunoblotting , Kidney Neoplasms/genetics , Mutation , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction , Transcriptome
16.
Cancer Res ; 76(9): 2836-44, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26896281

ABSTRACT

Individuals harboring inherited heterozygous germline mutations in BAP1 are predisposed to a range of benign and malignant tumor types, including malignant mesothelioma, melanoma, and kidney carcinoma. However, evidence to support a tumor-suppressive role for BAP1 in cancer remains contradictory. To test experimentally whether BAP1 behaves as a tumor suppressor, we monitored spontaneous tumor development in three different mouse models with germline heterozygous mutations in Bap1, including two models in which the knock-in mutations are identical to those reported in human BAP1 cancer syndrome families. We observed spontaneous malignant tumors in 54 of 93 Bap1-mutant mice (58%) versus 4 of 43 (9%) wild-type littermates. All three Bap1-mutant models exhibited a high incidence and similar spectrum of neoplasms, including ovarian sex cord stromal tumors, lung and mammary carcinomas, and spindle cell tumors. Notably, we also observed malignant mesotheliomas in two Bap1-mutant mice, but not in any wild-type animals. We further confirmed that the remaining wild-type Bap1 allele was lost in both spontaneous ovarian tumors and mesotheliomas, resulting in the loss of Bap1 expression. Additional studies revealed that asbestos exposure induced a highly significant increase in the incidence of aggressive mesotheliomas in the two mouse models carrying clinically relevant Bap1 mutations compared with asbestos-exposed wild-type littermates. Collectively, these findings provide genetic evidence that Bap1 is a bona fide tumor suppressor gene and offer key insights into the contribution of carcinogen exposure to enhanced cancer susceptibility. Cancer Res; 76(9); 2836-44. ©2016 AACR.


Subject(s)
Genes, Tumor Suppressor , Germ-Line Mutation , Neoplastic Syndromes, Hereditary , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Animals , Comparative Genomic Hybridization , Disease Models, Animal , Gene Knock-In Techniques , Genetic Predisposition to Disease/genetics , Genotype , Heterozygote , Immunohistochemistry , Laser Capture Microdissection , Mice , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction
17.
Cancer Biol Ther ; 16(4): 580-8, 2015.
Article in English | MEDLINE | ID: mdl-25793663

ABSTRACT

Constitutive activation of AKT is a frequent occurrence in the development of human T-cell acute lymphocytic leukemia/lymphomas (T-ALLs), due largely to inactivation of PTEN. Up regulation of MYC is also commonly observed in human T-ALLs. We previously demonstrated that expression of a constitutively active form of Lck-Akt2 alone is sufficient to initiate T-cell lymphoma in mice, and that tumor formation typically requires up regulation of Myc or Dlx5 caused by specific chromosomal rearrangements. Furthermore, Lck-Dlx5 mice develop T-ALLs that consistently acquire overexpression of Myc and activation of Akt, the latter due to loss of Pten expression. Proliferation of T-ALL cells from Lck-Dlx5 mice was found to be highly sensitive to the Akt pathway inhibitors BEZ235 and RAD001, as well as to JQ1, an inhibitor of bromodomain proteins, one of which (BRD4) regulates Myc transcription. Additionally, low concentrations of BEZ235 were found to cooperate with JQ1 to enhance cell cycle arrest. Higher concentrations of BEZ235 (≥0.5 µM) promoted cell death, although the addition of JQ1 did not result in a further increase in apoptosis. In contrast, the specific Myc inhibitor 10058-F4 caused apoptosis, and when combined with BEZ235 (≥0.5 µM), an enhanced effect on apoptosis was consistently observed. In addition, BEZ235 and RAD001 potentiated vincristine-induced apoptosis when the cells were treated with both drugs simultaneously, whereas pretreatment with BEZ235 antagonized the cell-killing effect of vincristine. Collectively, these experimental findings provide rationale for the design of novel combination therapies for T-ALL that includes targeting of AKT and MYC.


Subject(s)
Cell Survival/drug effects , Homeodomain Proteins/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Apoptosis/drug effects , Azepines/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/genetics , Everolimus/pharmacology , Imidazoles/pharmacology , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Quinolines/pharmacology , Signal Transduction/drug effects , Thiazoles/pharmacology , Transcription, Genetic/drug effects , Triazoles/pharmacology , Vincristine/pharmacology
18.
Cancer Res ; 74(16): 4388-97, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24928783

ABSTRACT

Malignant mesotheliomas are highly aggressive tumors usually caused by exposure to asbestos. Germline-inactivating mutations of BAP1 predispose to mesothelioma and certain other cancers. However, why mesothelioma is the predominate malignancy in some BAP1 families and not others, and whether exposure to asbestos is required for development of mesothelioma in BAP1 mutation carriers are not known. To address these questions experimentally, we generated a Bap1(+/-) knockout mouse model to assess its susceptibility to mesothelioma upon chronic exposure to asbestos. Bap1(+/-) mice exhibited a significantly higher incidence of asbestos-induced mesothelioma than wild-type (WT) littermates (73% vs. 32%, respectively). Furthermore, mesotheliomas arose at an accelerated rate in Bap1(+/-) mice than in WT animals (median survival, 43 weeks vs. 55 weeks after initial exposure, respectively) and showed increased invasiveness and proliferation. No spontaneous mesotheliomas were seen in unexposed Bap1(+/-) mice followed for up to 87 weeks of age. Mesothelioma cells from Bap1(+/-) mice showed biallelic inactivation of Bap1, consistent with its proposed role as a recessive cancer susceptibility gene. Unlike in WT mice, mesotheliomas from Bap1(+/-) mice did not require homozygous loss of Cdkn2a. However, normal mesothelial cells and mesothelioma cells from Bap1(+/-) mice showed downregulation of Rb through a p16(Ink4a)-independent mechanism, suggesting that predisposition of Bap1(+/-) mice to mesothelioma may be facilitated, in part, by cooperation between Bap1 and Rb. Drawing parallels to human disease, these unbiased genetic findings indicate that BAP1 mutation carriers are predisposed to the tumorigenic effects of asbestos and suggest that high penetrance of mesothelioma requires such environmental exposure.


Subject(s)
Asbestos/toxicity , Germ-Line Mutation , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Mesothelioma/etiology , Mesothelioma/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Animals , Disease Models, Animal , Epigenomics , Female , Genetic Predisposition to Disease , Genotype , Lung Neoplasms/metabolism , Mesothelioma/metabolism , Mesothelioma, Malignant , Mice , Mice, Knockout , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism
19.
Mol Cancer Res ; 10(9): 1178-88, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22798428

ABSTRACT

Group I p21-activated kinases (PAK) are important effectors of the small GTPases Rac and Cdc42, which regulate cell motility/migration, survival, proliferation, and gene transcription. Hyperactivation of these kinases have been reported in many tumor types, making PAKs attractive targets for therapeutic intervention. PAKs are activated by growth factor-mediated signaling and are negatively regulated by the tumor suppressor neurofibromatosis type 2 (NF2)/Merlin. Thus, tumors characterized by NF2 inactivation would be expected to show hyperactivated PAK signaling. On the basis of this rationale, we evaluated the status of PAK signaling in malignant mesothelioma, an aggressive neoplasm that is resistant to current therapies and shows frequent inactivation of NF2. We show that group I PAKs are activated in most mesotheliomas and mesothelioma cell lines and that genetic or pharmacologic inhibition of PAKs is sufficient to inhibit mesothelioma cell proliferation and survival. We also identify downstream effectors and signaling pathways that may contribute mechanistically to PAK-related tumorigenesis. Specifically, we show that inhibition of PAK results in attenuation of AKT and Raf-MAPK signaling and decreased tumor cell viability. Collectively, these data suggest that pharmacologic inhibition of group I PAKs may have therapeutic efficacy in tumors characterized by PAK activation.


Subject(s)
Disulfides/pharmacology , Gene Expression Regulation, Neoplastic/genetics , Mesothelioma/genetics , Naphthols/pharmacology , Neurofibromin 2/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Animals , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Electrophoresis, Gel, Two-Dimensional , Gene Knockdown Techniques , Humans , Mesothelioma/drug therapy , Mesothelioma/metabolism , Mice , Neurofibromin 2/antagonists & inhibitors , Neurofibromin 2/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , p21-Activated Kinases/antagonists & inhibitors , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
20.
Nat Genet ; 43(10): 1022-5, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21874000

ABSTRACT

Because only a small fraction of asbestos-exposed individuals develop malignant mesothelioma, and because mesothelioma clustering is observed in some families, we searched for genetic predisposing factors. We discovered germline mutations in the gene encoding BRCA1 associated protein-1 (BAP1) in two families with a high incidence of mesothelioma, and we observed somatic alterations affecting BAP1 in familial mesotheliomas, indicating biallelic inactivation. In addition to mesothelioma, some BAP1 mutation carriers developed uveal melanoma. We also found germline BAP1 mutations in 2 of 26 sporadic mesotheliomas; both individuals with mutant BAP1 were previously diagnosed with uveal melanoma. We also observed somatic truncating BAP1 mutations and aberrant BAP1 expression in sporadic mesotheliomas without germline mutations. These results identify a BAP1-related cancer syndrome that is characterized by mesothelioma and uveal melanoma. We hypothesize that other cancers may also be involved and that mesothelioma predominates upon asbestos exposure. These findings will help to identify individuals at high risk of mesothelioma who could be targeted for early intervention.


Subject(s)
Germ-Line Mutation , Mesothelioma/genetics , Pleural Neoplasms/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Asbestos/toxicity , Environmental Exposure , Female , Genetic Linkage , Genetic Predisposition to Disease , Humans , Male , Melanoma/genetics , Mesothelioma/pathology , Pedigree , Pleural Neoplasms/pathology , Risk Factors , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Uveal Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...