Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(34): 40178-40190, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37602460

ABSTRACT

The search for next-generation antibacterial compounds that overcome the development of resistance can be facilitated by identifying how to target the cell membrane of bacteria. Understanding the key molecular features that enable interactions with lipids and lead to membrane disruption is therefore crucial. Here, we employ a library of lipid-like compounds (lipidoids) comprising modular structures with tunable hydrophobic and hydrophilic architecture to shed light on how the chemical functionality and molecular shape of synthetic amphiphilic compounds determine their activity against bacterial membranes. Synthesized from combinations of 8 different polyamines as headgroups and 13 acrylates as tails, 104 different lipidoids are tested for activity against a model Gram-positive bacterial strain (Bacillus subtilis). Results from the combinatorial screening assay show that lipidoids with the most potent antimicrobial properties (down to 2 µM) have intermediate tail hydrophobicity (i.e., c log P values between 3 and 4) and lower headgroup charge density (i.e., longer spacers between charged amines). However, the most important factor appeared to be the ability of a lipidoid to self-assemble into an inverse hexagonal liquid crystalline phase, as observed by small-angle X-ray scattering (SAXS) analysis. The lipidoids active at lowest concentrations, which induced the most significant membrane damage during propidium iodide (PI) permeabilization assays, were those that aggregated into highly curved inverse hexagonal liquid crystal phases. These observations suggest that the introduction of strong curvature stress into the membrane is one way to maximize membrane disruption and lipidoid antimicrobial activity. Lipidoids that demonstrated the ability to furnish this phase consisted of either (i) branched or linear headgroups with shorter linear tails or (ii) cyclic headgroups with 4 bulky nonlinear tails. On the contrary, lipidoids previously observed to adopt disc-like conformations that pack into bicontinuous cubic phases were significantly less effective against B. subtilis. The discovery of these structure-property relationships demonstrates that it is not simply a balance of hydrophobic and hydrophilic moieties that govern membrane-active antibacterial activity, but also their intrinsic curvature and collective behavior.


Subject(s)
Anti-Bacterial Agents , Scattering, Small Angle , X-Ray Diffraction , Membranes , Cell Membrane , Anti-Bacterial Agents/pharmacology , Cations
SELECTION OF CITATIONS
SEARCH DETAIL
...