Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(3): e0265774, 2022.
Article in English | MEDLINE | ID: mdl-35324969

ABSTRACT

Staphylococcus aureus employs a multitude of immune-evasive tactics to circumvent host defenses including the complement system, a component of innate immunity central to controlling bacterial infections. With antibiotic resistance becoming increasingly common, there is a dire need for novel therapies. Previously, we have shown that S. aureus binds the complement regulator factor H (FH) via surface protein SdrE to inhibit complement. To address the need for novel therapeutics and take advantage of the FH:SdrE interaction, we examined the effect of a fusion protein comprised of the SdrE-interacting domain of FH coupled with IgG Fc on complement-mediated opsonophagocytosis and bacterial killing of community associated methicillin-resistant S. aureus. S. aureus bound significantly more FH-Fc compared to Fc-control proteins and FH-Fc competed with serum FH for S. aureus binding. FH-Fc treatment increased C3-fragment opsonization of S. aureus for both C3b and iC3b, and boosted generation of the anaphylatoxin C5a. In 5 and 10% serum, FH-Fc treatment significantly increased S. aureus killing by polymorphonuclear cells. This anti-staphylococcal effect was evident in 75% (3/4) of clinical isolates tested. This study demonstrates that FH-Fc fusion proteins have the potential to mitigate the protective effects of bound serum FH rendering S. aureus more vulnerable to the host immune system. Thus, we report the promise of virulence-factor-targeted fusion-proteins as an avenue for prospective anti-staphylococcal therapeutic development.


Subject(s)
Complement Factor H , Methicillin-Resistant Staphylococcus aureus , Complement C3b/metabolism , Complement System Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/metabolism , Opsonization , Protein Binding , Staphylococcus aureus/metabolism
2.
Article in English | MEDLINE | ID: mdl-28993759

ABSTRACT

Natural killer (NK) cells represent an important effector arm against viral infection, and mounting evidence suggests that viral infection plays a role in the development of type 1 diabetes (T1D) in at least a portion of patients. NK cells recognize their target cells through a delicate balance of inhibitory and stimulatory receptors on their surface. If unbalanced, NK cells have great potential to wreak havoc in the pancreas due to the beta cell expression of the as-yet-defined NKp46 ligand through interactions with the activating NKp46 receptor found on the surface of most NK cells. Blocking interactions between NKp46 and its ligand protects mice from STZ-induced diabetes, but differential expression non-diabetic and diabetic donor samples have not been tested. Additional studies have shown that peripheral blood NK cells from human T1D patients have altered phenotypes that reduce the lytic and functional ability of the NK cells. Investigations of humanT1D pancreas tissues have indicated that the presence of NK cells may be beneficial despite their infrequent detection. In non-obese diabetic (NOD) mice, we have noted that NK cells express high levels of the proinflammatory mediator 12/15-lipoxygenase (12/15-LO), and decreased levels of stimulatory receptors. Conversely, NK cells of 12/15-LO deficient NOD mice, which are protected from diabetes development, express significantly higher levels of stimulatory receptors. Furthermore, the human NK92 cell line expresses the ALOX12 protein [human 12-lipoxygenase (12-LO), related to mouse 12/15-LO] via Western blotting. Human 12-LO is upregulated in the pancreas of both T1D and T2D human donors with insulin-containing islets, showing a link between 12-LO expression and diabetes progression. Therefore, our hypothesis is that NK cells in those susceptible to developing T1D are unable to function properly during viral infections of pancreatic beta cells due to increased 12-LO expression and activation, which contributes to increased interferon-gamma production and an imbalance in activating and inhibitory NK cell receptors, and may contribute to downstream autoimmune T cell responses. The work presented here outlines evidence from our lab, as well as published literature, supporting our hypothesis, including novel data.

3.
PLoS One ; 12(9): e0183908, 2017.
Article in English | MEDLINE | ID: mdl-28877242

ABSTRACT

Type 1 diabetes (T1D) is a chronic inflammatory disease that is characterized by autoimmune destruction of insulin-producing pancreatic beta cells. The goal of this study was to identify novel protein signatures that distinguish Islets from patients with T1D, patients who are autoantibody positive without symptoms of diabetes, and from individuals with no evidence of disease. High resolution high mass accuracy label free quantitative mass spectrometry analysis was applied to islets isolated by laser capture microdissection from disease stratified human pancreata from the Network for Pancreatic Organ Donors with Diabetes (nPOD), these included donors without diabetes, donors with T1D-associated autoantibodies in the absence of diabetes, and donors with T1D. Thirty-nine proteins were found to be differentially regulated in autoantibody positive cases compared to the no-disease group, with 25 upregulated and 14 downregulated proteins. For the T1D cases, 63 proteins were differentially expressed, with 24 upregulated and 39 downregulated, compared to the no disease controls. We have identified functional annotated enriched gene families and multiple protein-protein interaction clusters of proteins are involved in biological and molecular processes that may have a role in T1D. The proteins that are upregulated in T1D cases include S100A9, S100A8, REG1B, REG3A and C9 amongst others. These proteins have important biological functions, such as inflammation, metabolic regulation, and autoimmunity, all of which are pathways linked to the pathogenesis of T1D. The identified proteins may be involved in T1D development and pathogenesis. Our findings of novel proteins uniquely upregulated in T1D pancreas provides impetus for further investigations focusing on their expression profiles in beta cells/ islets to evaluate their role in the disease pathogenesis. Some of these molecules may be novel therapeutic targets T1D.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Islets of Langerhans/metabolism , Adult , Child , Chromatography, Liquid , Diabetes Mellitus, Type 1/etiology , Female , Humans , Laser Capture Microdissection , Male , Mass Spectrometry , Metabolic Networks and Pathways , Microscopy, Confocal , Microscopy, Fluorescence , Pancreatitis-Associated Proteins , Protein Interaction Domains and Motifs , Proteomics/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...