Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37112211

ABSTRACT

The Russian sector of the arctic shelf is the longest in the world. Quite a lot of places of massive discharge of bubble methane from the seabed into the water column and further into the atmosphere were found there. This natural phenomenon requires an extensive complex of geological, biological, geophysical, and chemical studies. This article is devoted to aspects of the use of a complex of marine geophysical equipment applied in the Russian sector of the arctic shelf for the detection and study of areas of the water and sedimentary strata with increased saturation with natural gases, as well as a description of some of the results obtained. This complex contains a single-beam scientific high-frequency echo sounder and multibeam system, a sub-bottom profiler, ocean-bottom seismographs, and equipment for continuous seismoacoustic profiling and electrical exploration. The experience of using the above equipment and the examples of the results obtained in the Laptev Sea have shown that these marine geophysical methods are effective and of particular importance for solving most problems related to the detection, mapping, quantification, and monitoring of underwater gas release from the bottom sediments of the shelf zone of the arctic seas, as well as the study of upper and deeper geological roots of gas emission and their relationship with tectonic processes. Geophysical surveys have a significant performance advantage compared to any contact methods. The large-scale application of a wide range of marine geophysical methods is essential for a comprehensive study of the geohazards of vast shelf zones, which have significant potential for economic use.

2.
Microorganisms ; 11(2)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36838215

ABSTRACT

Bottom sediments at methane discharge sites of the Laptev Sea shelf were investigated. The rates of microbial methanogenesis and methane oxidation were measured, and the communities responsible for these processes were analyzed. Methane content in the sediments varied from 0.9 to 37 µmol CH4 dm-3. Methane carbon isotopic composition (δ13C-CH4) varied from -98.9 to -77.6‱, indicating its biogenic origin. The rates of hydrogenotrophic methanogenesis were low (0.4-5.0 nmol dm-3 day-1). Methane oxidation rates varied from 0.4 to 1.2 µmol dm-3 day-1 at the seep stations. Four lineages of anaerobic methanotrophic archaea (ANME) (1, 2a-2b, 2c, and 3) were found in the deeper sediments at the seep stations along with sulfate-reducing Desulfobacteriota. The ANME-2a-2b clade was predominant among ANME. Aerobic ammonium-oxidizing Crenarchaeota (family Nitrosopumilaceae) predominated in the upper sediments along with heterotrophic Actinobacteriota and Bacteroidota, and mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae). Members of the genera Sulfurovum and Sulfurimonas occurred in the sediments of the seep stations. Mehtanotrophs of the classes Alphaproteobacteria (Methyloceanibacter) and Gammaproteobacteria (families Methylophilaceae and Methylomonadaceae) occurred in the sediments of all stations. The microbial community composition was similar to that of methane seep sediments from geographically remote areas of the global ocean.

3.
J Environ Radioact ; 253-254: 106988, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36057229

ABSTRACT

Transport and accumulation of radionuclides in the Arctic depends on many biogeochemical processes, which are changing at accelerated rates due to climate change and human economic activity. We present the results of a study on the features distribution of some natural radionuclides in the marine sediments on the East Siberian Arctic Shelf collected during several expeditions from 2008 to 2019. Average activity concentration of 232Th, 40K and 226Ra under the influence of different sedimentation regime increases from 40.7, 418 and 30.8 Bq/kg to 41.6, 423 and 34.9 Bq/kg respectively from coastal shelf marine sediments (<50% clay) to outer shelf marine sediments (>50% clay). Sediment particle size has a greater impact on radionuclides in the coastal shelf. An increase in the activity concentrations of 232Th and 226Ra with the increasing clay particles were found. On the outer shelf with a change in the sedimentation regime, the influence of the size composition decreased, at the same time, there is a correlation between the organic carbon concentration and the radionuclide activity concentration. Absolute maximums of natural radionuclide activity concentration (232Th = 70.9, 226Ra = 70.4, 40K = 591 Bq/kg) were detected in the Chaun Bay. The highest activity concentration of 226Ra was found in paleo-river valleys marine sediments. A low 232Th/226Ra activity concentration ratio indicates the enrichment of paleo-river valleys marine sediments with 226Ra. In the deep-sea sediments of the shelf slope on the contrary paleo-river valleys, this ratio is greatly increased.


Subject(s)
Geologic Sediments , Radiation Monitoring , Carbon , Clay , Geologic Sediments/chemistry , Humans , Radioisotopes/analysis
4.
Data Brief ; 45: 108606, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36164304

ABSTRACT

Polycyclic Aromatic Hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the Arctic. They have different sources and pathways of entering in to the environment. Because of their lipophilic properties, PAHs can easily accumulate in marine sediments. This work gives a new data about concentration of PAHs in Siberian arctic seas. Sixteen priority PAHs as well as 1- and 2-methylnaphthalenes were analyzed by gas chromatography - tandem mass spectrometry in the twenty-four sediment samples taken from Kara, Laptev and East Siberian Seas in October 2020. The obtained sum concentrations ranged from 31 to 223 ng g-1 with the greatest contribution of phenanthrene, benzo[b]fluoranthene, benzo[k]fluoranthene, as well as naphthalene and its methyl derivatives while the greatest PAH levels were observed in Laptev Sea. The toxic equivalent in benzo[a]pyrene units was from 2.2-18.2 ng g-1. Total organic carbon (TOC) and black carbon (BC) content in arctic were in the ranges of 0.18-1.98 % and 0.03-0.40 %, respectively. The overall PAH level shows negligible harm to the environment.

5.
Mar Pollut Bull ; 180: 113741, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35596996

ABSTRACT

Polycyclic Aromatic Hydrocarbons (PAHs) are among the main persistent organic pollutants in the Arcticwhich enter the polar region from lower latitudes by air transport and ocean currents and accumulate in marine sediments. This work represents the first study in 25 years of the least studied and hard-to-reach areas of Siberian arctic seas. Sixteen priority PAHs as well as 1- and 2-methylnaphthalenes were analyzed by gas chromatography - tandem mass spectrometry in the twenty-four sediment samples taken from Kara, Laptev and East Siberian Seas in October 2020. The obtained sum concentrations ranged from 31 to 223 ng/ g with the greatest contribution of phenanthrene, benzo[b]fluoranthene, benzo[k]fluoranthene, as well as naphthalene and its methyl derivatives while the greatest PAH levels were observed in Laptev Sea. No correlations between sum PAH concentration, total organic carbon and black carbon contents were found. The toxic equivalent in benzo[a]pyrene units was from 2.2-18.2 ng/ g that shows the general safe environmental situation in the region. The overall PAH level is comparable with the data obtained in 1990s which indicates a long-term persistence of pollution despite an overall decline in global PAH emissions. The main sources of PAHs involve mainly coal/biomass and liquid fuel combustion with weaker contribution of petroleum sources.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Carbon , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Geologic Sediments , Oceans and Seas , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
6.
Sci Prog ; 104(4): 368504211056290, 2021 10.
Article in English | MEDLINE | ID: mdl-34763547

ABSTRACT

'We have kicked the can down the road once again - but we are running out of road.' - Rachel Kyte, Dean of Fletcher School at Tufts University.We, in our capacities as scientists, economists, governance and policy specialists, are shifting from warnings to guidance for action before there is no more 'road.' The science is clear and irrefutable; humanity is in advanced ecological overshoot. Our overexploitation of resources exceeds ecosystems' capacity to provide them or to absorb our waste. Society has failed to meet clearly stated goals of the UN Framework Convention on Climate Change. Civilization faces an epochal crossroads, but with potentially much better, wiser outcomes if we act now.What are the concrete and transformative actions by which we can turn away from the abyss? In this paper we forcefully recommend priority actions and resource allocation to avert the worst of the climate and nature emergencies, two of the most pressing symptoms of overshoot, and lead society into a future of greater wellbeing and wisdom. Humanity has begun the social, economic, political and technological initiatives needed for this transformation. Now, massive upscaling and acceleration of these actions and collaborations are essential before irreversible tipping points are crossed in the coming decade. We still can overcome significant societal, political and economic barriers of our own making.Previously, we identified six core areas for urgent global action - energy, pollutants, nature, food systems, population stabilization and economic goals. Here we identify an indicative, systemic and time-limited framework for priority actions for policy, planning and management at multiple scales from household to global. We broadly follow the 'Reduce-Remove-Repair' approach to rapid action. To guide decision makers, planners, managers, and budgeters, we cite some of the many experiments, mechanisms and resources in order to facilitate rapid global adoption of effective solutions.Our biggest challenges are not technical, but social, economic, political and behavioral. To have hope of success, we must accelerate collaborative actions across scales, in different cultures and governance systems, while maintaining adequate social, economic and political stability. Effective and timely actions are still achievable on many, though not all fronts. Such change will mean the difference for billions of children and adults, hundreds of thousands of species, health of many ecosystems, and will determine our common future.


Subject(s)
Climate Change , Ecosystem , Child , Humans
7.
Sensors (Basel) ; 21(12)2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34207695

ABSTRACT

The Arctic seas are now of particular interest due to their prospects in terms of hydrocarbon extraction, development of marine transport routes, etc. Thus, various geohazards, including those related to seismicity, require detailed studies, especially by instrumental methods. This paper is devoted to the ocean-bottom seismographs (OBS) based on broadband molecular-electronic transfer (MET) sensors and a deployment case study in the Laptev Sea. The purpose of the study is to introduce the architecture of several modifications of OBS and to demonstrate their applicability in solving different tasks in the framework of seismic hazard assessment for the Arctic seas. To do this, we used the first results of several pilot deployments of the OBS developed by Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS) and IP Ilyinskiy A.D. in the Laptev Sea that took place in 2018-2020. We highlighted various seismological applications of OBS based on broadband MET sensors CME-4311 (60 s) and CME-4111 (120 s), including the analysis of ambient seismic noise, registering the signals of large remote earthquakes and weak local microearthquakes, and the instrumental approach of the site response assessment. The main characteristics of the broadband MET sensors and OBS architectures turned out to be suitable for obtaining high-quality OBS records under the Arctic conditions to solve seismological problems. In addition, the obtained case study results showed the prospects in a broader context, such as the possible influence of the seismotectonic factor on the bottom-up thawing of subsea permafrost and massive methane release, probably from decaying hydrates and deep geological sources. The described OBS will be actively used in further Arctic expeditions.

8.
Proc Natl Acad Sci U S A ; 114(7): E1054-E1061, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28137854

ABSTRACT

Black carbon (BC) in haze and deposited on snow and ice can have strong effects on the radiative balance of the Arctic. There is a geographic bias in Arctic BC studies toward the Atlantic sector, with lack of observational constraints for the extensive Russian Siberian Arctic, spanning nearly half of the circum-Arctic. Here, 2 y of observations at Tiksi (East Siberian Arctic) establish a strong seasonality in both BC concentrations (8 ng⋅m-3 to 302 ng⋅m-3) and dual-isotope-constrained sources (19 to 73% contribution from biomass burning). Comparisons between observations and a dispersion model, coupled to an anthropogenic emissions inventory and a fire emissions inventory, give mixed results. In the European Arctic, this model has proven to simulate BC concentrations and source contributions well. However, the model is less successful in reproducing BC concentrations and sources for the Russian Arctic. Using a Bayesian approach, we show that, in contrast to earlier studies, contributions from gas flaring (6%), power plants (9%), and open fires (12%) are relatively small, with the major sources instead being domestic (35%) and transport (38%). The observation-based evaluation of reported emissions identifies errors in spatial allocation of BC sources in the inventory and highlights the importance of improving emission distribution and source attribution, to develop reliable mitigation strategies for efficient reduction of BC impact on the Russian Arctic, one of the fastest-warming regions on Earth.

9.
Proc Natl Acad Sci U S A ; 110(35): 14168-73, 2013 Aug 27.
Article in English | MEDLINE | ID: mdl-23940354

ABSTRACT

Mobilization of Arctic permafrost carbon is expected to increase with warming-induced thawing. However, this effect is challenging to assess due to the diverse processes controlling the release of various organic carbon (OC) pools from heterogeneous Arctic landscapes. Here, by radiocarbon dating various terrestrial OC components in fluvially and coastally integrated estuarine sediments, we present a unique framework for deconvoluting the contrasting mobilization mechanisms of surface vs. deep (permafrost) carbon pools across the climosequence of the Eurasian Arctic. Vascular plant-derived lignin phenol (14)C contents reveal significant inputs of young carbon from surface sources whose delivery is dominantly controlled by river runoff. In contrast, plant wax lipids predominantly trace ancient (permafrost) OC that is preferentially mobilized from discontinuous permafrost regions, where hydrological conduits penetrate deeper into soils and thermokarst erosion occurs more frequently. Because river runoff has significantly increased across the Eurasian Arctic in recent decades, we estimate from an isotopic mixing model that, in tandem with an increased transfer of young surface carbon, the proportion of mobilized terrestrial OC accounted for by ancient carbon has increased by 3-6% between 1985 and 2004. These findings suggest that although partly masked by surface carbon export, climate change-induced mobilization of old permafrost carbon is well underway in the Arctic.

SELECTION OF CITATIONS
SEARCH DETAIL
...