Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 15(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38398917

ABSTRACT

Previous studies have shown that undoped and doped SnO2 thin films have better optical and electrical properties. This study aims to investigate the thermoelectric properties of two distinct semiconducting oxide thin films, namely SnO2 and F-doped SnO2 (FTO), by the nebulizer spray pyrolysis technique. An X-ray diffraction study reveals that the synthesized films exhibit a tetragonal structure with the (200) preferred orientation. The film structural quality increases from SnO2 to FTO due to the substitution of F- ions into the host lattice. The film thickness increases from 530 nm for SnO2 to 650 nm for FTO films. Room-temperature electrical resistivity decreases from (8.96 ± 0.02) × 10-2 Ω·cm to (4.64 ± 0.01) × 10-3 Ω·cm for the SnO2 and FTO thin films, respectively. This is due to the increase in the carrier density of the films, (2.92 ± 0.02) × 1019 cm-3 (SnO2) and (1.63 ± 0.03) × 1020 cm-3 (FTO), caused by anionic substitution. It is confirmed that varying the temperature (K) enhances the electron transport properties. The obtained Seebeck coefficient (S) increases as the temperature is increased, up to 360 K. The synthesized films exhibit the S value of -234 ± 3 µV/K (SnO2) and -204 ± 3 µV/K (FTO) at 360 K. The estimated power factor (PF) drastically increases from ~70 (µW/m·K2) to ~900 (µW/m·K2) for the SnO2 and FTO film, respectively.

2.
Nanomaterials (Basel) ; 13(7)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37049347

ABSTRACT

Nanographene-mesoporous silicon (G-PSi) composites have recently emerged as a promising class of nanomaterials with tuneable physical properties. In this study, we investigated the impact of nanographene coating on the Seebeck coefficient of mesoporous silicon (PSi) obtained by varying two parameters: porosity and thickness. To achieve this, an electrochemical etching process on p + doped Si is presented for the control of the parameters (thicknesses varying from 20 to 160 µm, and a porosity close to 50%), and for nanographene incorporation through chemical vapor deposition. Raman and XPS spectroscopies confirmed the presence of nanographene on PSi. Using a homemade ZT meter, the Seebeck coefficient of the p + doped Si matrix was evaluated at close to 100 ± 15 µV/K and confirmed by UPS spectroscopy analysis. Our findings suggest that the Seebeck coefficient of the porous Si can be measured independently from that of the substrate by fitting measurements on samples with a different thickness of the porous layer. The value of the Seebeck coefficient for the porous Si is of the order of 750 ± 40 µV/K. Furthermore, the incorporation of nanographene induced a drastic decrease to approximately 120 ± 15 µV/K, a value similar to that of its silicon substrate.

3.
Rev Sci Instrum ; 93(9): 095103, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182499

ABSTRACT

An innovative technique was developed for the direct measurement of the absolute radiant flux emitted from transient flames. The design of the experimental device, called FAIRS (Fast Absolute Infra-Red Sensor), is detailed in this work. The main concept of FAIRS is based on the combination of a carbon nano-tube-based black body as a sensitive element, coupled to a fast IR HgCdTe detector via an achromatic optical setup. A specific calibration protocol based on a laboratory blackbody (ambient to 850 °C) allows the qualification of the FAIRS for absolute radiative heat-flux measurements, with a response time less than 1 µs that was checked, thanks to pulsed laser irradiation. It is thus demonstrated that FAIRS is a good candidate for transient measurements, with a simplified calibration procedure. FAIRS was coupled with ultra-fast schlieren imaging on spherical expanding CH4/air and C3H8/air flames. In this condition, it is possible to correlate the real time flame diameter to its absolute radiative heat losses.

4.
Nanomaterials (Basel) ; 11(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919090

ABSTRACT

In this work, direct irradiation by a Ti:Sapphire (100 fs) femtosecond laser beam at third harmonic (266 nm), with a moderate repetition rate (50 and 1000 Hz), was used to create regular periodic nanostructures upon polystyrene (PS) thin films. Typical Low Spatial Frequency LIPSSs (LSFLs) were obtained for 50 Hz, as well as for 1 kHz, in cases of one spot zone, and also using a line scanning irradiation. Laser beam fluence, repetition rate, number of pulses (or irradiation time), and scan velocity were optimized to lead to the formation of various periodic nanostructures. It was found that the surface morphology of PS strongly depends on the accumulation of a high number of pulses (103 to 107 pulses) at low energy (1 to 20 µJ/pulse). Additionally, heating the substrate from room temperature up to 97 °C during the laser irradiation modified the ripples' morphology, particularly their amplitude enhancement from 12 nm (RT) to 20 nm. Scanning electron microscopy and atomic force microscopy were used to image the morphological features of the surface structures. Laser-beam scanning at a chosen speed allowed for the generation of well-resolved ripples on the polymer film and homogeneity over a large area.

5.
RSC Adv ; 11(9): 5003-5007, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-35424455

ABSTRACT

We describe here a rapid and straightforward solvent-free method to access phenylthiazolo[5,4-b]pyridines using a Nd-YAG laser NANO-NY81-10 (λ = 355 nm, 10 Hz pulse frequency; 8 ns pulse duration). This newly presented method successfully brings several improvements to the laser assisted synthesis of N,S-heterocycles. We are able to provide a solvent-, metal- and base-free method with good yield and a substantial reduction in reaction time.

6.
Rev Sci Instrum ; 89(11): 113901, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501322

ABSTRACT

In this paper, an original homemade system is presented in detail for the electrical and thermoelectrical characterizations of several types of materials from bulk to thin films. This setup was built using a modulated CO2 laser beam to probe the thermoelectric properties at different depths below the surface. It allows a simultaneous measurement of the electrical conductivity (σ) and the Seebeck coefficient (S), from room temperature up to 250 °C. A commercial sample of Bi2Te3 was first used to validate the Seebeck coefficient measurement. Single crystalline silicon (sc-Si) was used for the uncertainty quantification during the simultaneous measurement of the Seebeck coefficient and the electrical conductivity. At the micrometer scale, thermoelectric characterization of the mesoporous Si (50 µm thickness) was achieved and results gave very promising values (S ≈ 700 µV K-1) for micro-thermo-generator fabrication. In the case of thin film materials, metals (copper and constantan) and oxide thin films (titanium oxide) were also characterized in the in-plane configuration in order to determine the metrology limits of our thermoelectric setup. In this case, a typical sensitivity of about 2µV K-1 was achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...