Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(15)2021 04.
Article in English | MEDLINE | ID: mdl-33827819

ABSTRACT

Neural cell diversity is essential to endow distinct brain regions with specific functions. During development, progenitors within these regions are characterized by specific gene expression programs, contributing to the generation of diversity in postmitotic neurons and astrocytes. While the region-specific molecular diversity of neurons and astrocytes is increasingly understood, whether these cells share region-specific programs remains unknown. Here, we show that in the neocortex and thalamus, neurons and astrocytes express shared region-specific transcriptional and epigenetic signatures. These signatures not only distinguish cells across these two brain regions but are also detected across substructures within regions, such as distinct thalamic nuclei, where clonal analysis reveals the existence of common nucleus-specific progenitors for neurons and astrocytes. Consistent with their shared molecular signature, regional specificity is maintained following astrocyte-to-neuron reprogramming. A detailed understanding of these regional-specific signatures may thus inform strategies for future cell-based brain repair.


Subject(s)
Astrocytes , Neocortex , Astrocytes/metabolism , Epigenomics , Neurons/physiology , Thalamus
2.
Science ; 364(6444): 987-990, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31048552

ABSTRACT

The mammalian brain's somatosensory cortex is a topographic map of the body's sensory experience. In mice, cortical barrels reflect whisker input. We asked whether these cortical structures require sensory input to develop or are driven by intrinsic activity. Thalamocortical columns, connecting the thalamus to the cortex, emerge before sensory input and concur with calcium waves in the embryonic thalamus. We show that the columnar organization of the thalamocortical somatotopic map exists in the mouse embryo before sensory input, thus linking spontaneous embryonic thalamic activity to somatosensory map formation. Without thalamic calcium waves, cortical circuits become hyperexcitable, columnar and barrel organization does not emerge, and the somatosensory map lacks anatomical and functional structure. Thus, a self-organized protomap in the embryonic thalamus drives the functional assembly of murine thalamocortical sensory circuits.


Subject(s)
Neurons/physiology , Somatosensory Cortex/embryology , Thalamus/embryology , Action Potentials , Animals , Brain Mapping , Calcium Signaling , Electric Stimulation , Mice , Mice, Inbred ICR , Mice, Transgenic , Neuronal Plasticity , Potassium Channels, Inwardly Rectifying/genetics
3.
Brain Struct Funct ; 224(4): 1403-1416, 2019 May.
Article in English | MEDLINE | ID: mdl-30756190

ABSTRACT

In the neocortex, large layer 5B pyramidal neurons implement a high-density firing code. In contrast, other subtypes of pyramidal neurons, including those in layer 2/3, are functionally characterized by their sparse firing rate. Here, we investigate the synaptic basis of this behavior by comparing the properties of the postsynaptic responses evoked by cortical inputs in layer 5B and layer 2/3 pyramidal neurons in vitro. We demonstrate that a major determinant of the larger responsiveness of layer 5B with respect to layer 2/3 pyramidal neurons is the different properties in their inhibitory postsynaptic currents (IPSCs): layer 5B pyramidal neurons have IPSCs of lower amplitude and the temporal delay between the excitatory and inhibitory synaptic components is also larger in these cells. Our data also suggest that this difference depends on the lower gain of the cortical response of layer 5 parvalbumin-positive fast-spiking (PV-FS) interneurons with respect to PV-FS cells from layer 2/3. We propose that, while superficial PV-FS interneurons are well suited to provide a powerful feed-forward inhibitory control of pyramidal neuron responses, layer 5 PV-FS interneurons are mainly engaged in a feedback inhibitory loop and only after a substantial recruitment of surrounding pyramidal cells do they respond to an external input.


Subject(s)
Action Potentials , Cerebral Cortex/physiology , Pyramidal Cells/physiology , Synapses/physiology , Animals , Female , Interneurons/physiology , Male , Mice, Inbred C57BL , Synaptic Potentials
4.
Brain Struct Funct ; 223(3): 1051-1069, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29081006

ABSTRACT

The axons forming the corpus callosum sustain the interhemispheric communication across homotopic cortical areas. We have studied how neurons throughout the columnar extension of the retrosplenial cortex integrate the contralateral input from callosal projecting neurons in cortical slices. Our results show that pyramidal neurons in layers 2/3 and the large, thick-tufted pyramidal neurons in layer 5B showed larger excitatory callosal responses than layer 5A and layer 5B thin-tufted pyramidal neurons, while layer 6 remained silent to this input. Feed-forward inhibitory currents generated by fast spiking, parvalbumin expressing  interneurons recruited by callosal axons mimicked the response size distribution of excitatory responses across pyramidal subtypes, being larger in those of superficial layers and in the layer 5B thick-tufted pyramidal cells. Overall, the combination of the excitatory and inhibitory currents evoked by callosal input had a strong and opposed effect in different layers of the cortex; while layer 2/3 pyramidal neurons were powerfully inhibited, the thick-tufted but not thin-tufted pyramidal neurons in layer 5 were strongly recruited. We believe that these results will help to understand the functional role of callosal connections in physiology and disease.


Subject(s)
Corpus Callosum/physiology , Functional Laterality/physiology , Neocortex/cytology , Neural Pathways/physiology , Neurons/physiology , 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology , Action Potentials/drug effects , Analysis of Variance , Animals , Animals, Newborn , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Electric Stimulation , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Female , Green Fluorescent Proteins/metabolism , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/physiology , Neural Inhibition/physiology , Neurons/classification , Neurons/drug effects , Parvalbumins/genetics , Parvalbumins/metabolism , Patch-Clamp Techniques , Phosphopyruvate Hydratase/metabolism , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...