Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 11(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36552258

ABSTRACT

The paleodiet of the shovel-tusked gomphotheres from Florida (Amebelodon floridanus, Konobelodon britti, and Serbelodon barbourensis) was assessed via microwear analysis of molar dental enamel and compared to a large database of both extant proboscideans and ungulates. Scratch and pit results show a consistent browsing signal in A. floridanus, K. britti and S. barbourensis. Fossil results are more similar to those of the extant Loxodonta cyclotis than to Loxodonta africana or Elephas maximus, the latter two taxa exhibiting a mixed feeding result. Scratch width scores are high in all three shovel tuskers as well as in the extant proboscideans indicating the ingestion of some coarse vegetation, most likely bark, and twigs. Gouging is relatively low in A. floridanus and S. barbourensis. Only K. britti has levels of gouging approximating that seen in extant elephants. Large pitting is relatively low in both fossil and extant forms although L. cyclotis has higher levels of large pitting including more puncture-like pits seen with fruit and/or seed consumption. A variety of scratch patterns indicating variation in tusk usage behavior was found. Some Serbelodon and Konobelodon mandibular tusks exhibited digging behavior, although Konobelodon digging behavior was much more common and obvious, whereas Amebelodon mandibular tusks did not exhibit digging behavior and were more likely used for stripping and scraping. Unusual distal tusk wear was found in Amebelodon and Serbelodon most likely due to stripping off tree bark. Upper tusk usage varied with all three fossil species exhibiting scraping and/or cutting behavior. Results indicate that shovel-tusked gomphotheres from Florida occupied a narrow dietary niche but employed a variety of strategies to obtain the vegetation that they consumed.

2.
Sci Rep ; 5: 17330, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26616864

ABSTRACT

The seasonality of human occupations in archaeological sites is highly significant for the study of hominin behavioural ecology, in particular the hunting strategies for their main prey-ungulates. We propose a new tool to quantify such seasonality from tooth microwear patterns in a dataset of ten large samples of extant ungulates resulting from well-known mass mortality events. The tool is based on the combination of two measures of variability of scratch density, namely standard deviation and coefficient of variation. The integration of these two measurements of variability permits the classification of each case into one of the following three categories: (1) short events, (2) long-continued event and (3) two separated short events. The tool is tested on a selection of eleven fossil samples from five Palaeolithic localities in Western Europe which show a consistent classification in the three categories. The tool proposed here opens new doors to investigate seasonal patterns of ungulate accumulations in archaeological sites using non-destructive sampling.


Subject(s)
Archaeology , Fossils , Animals , Geography , Humans
3.
Science ; 331(6021): 1178-81, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21385712

ABSTRACT

The evolution of high-crowned molars among horses (Family Equidae) is thought to be an adaptation for abrasive diets associated with the spread of grasslands. The sharpness and relief of the worn cusp apices of teeth (mesowear) are a measure of dietary abrasion. We collected mesowear data for North American Equidae for the past 55.5 million years to test the association of molar height and dietary abrasion. Mesowear trends in horses are reflective of global cooling and associated vegetation changes. There is a strong correlation between mesowear and crown height in horses; however, most horse paleopopulations had highly variable amounts of dietary abrasion, suggesting that selective pressures for crown height may have been weak much of the time. However, instances of higher abrasion were observed in some paleopopulations, suggesting intervals of stronger selection for the evolution of dentitions, including the early Miocene shortly before the first appearance of Equinae, the horse subfamily in which high-crowned dentitions evolved.


Subject(s)
Biological Evolution , Dentition , Diet , Equidae , Fossils , Molar/anatomy & histology , Tooth Crown/anatomy & histology , Animals , Climate , Equidae/anatomy & histology , Equidae/classification , Horses/anatomy & histology , Horses/classification , North America , Paleodontology , Phylogeny , Poaceae , Tooth Wear
4.
Proc Natl Acad Sci U S A ; 102(46): 16579-83, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16260727

ABSTRACT

Primates tend to be long-lived, and, except for humans, most primate females are able to reproduce into old age. Although aging in most mammals is accompanied by dental senescence due to advanced wear, primates have low-crowned teeth that wear down before old age. Because tooth wear alters crown features gradually, testing whether early dental senescence causes reproductive senescence has been difficult. To identify whether and when low-crowned teeth compromise reproductive success, we used a 20-year field study of Propithecus edwardsi, a rainforest lemur from Madagascar with a maximum lifespan of >27 years. We analyzed tooth wear in three dimensions with dental topographic analysis by using Geographical Information Systems (GIS) technology. We report that tooth wear exposes compensatory shearing blades that maintain dental function for 18 years. Beyond this age, female fertility remains high; however infants survive only if lactation seasons have elevated rainfall. Therefore, low-crowned teeth accommodate wear to a point, after which reproductive success closely tracks environmental fluctuations. These results suggest a tooth wear-determined, but rainfall-mediated, onset of reproductive senescence. Additionally, our study indicates that even subtle changes in climate may affect reproductive success of rainforest species.


Subject(s)
Primates/physiology , Rain , Survival Analysis , Tooth Erosion , Tooth/growth & development , Aging , Animals , Fertility , Humans
5.
J Hum Evol ; 47(3): 115-44, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15337412

ABSTRACT

A new method of scoring dental microscopic use wear, initially developed for and applied to extant and extinct ungulates, is here applied to primates, and the efficacy of the method as a tool for diagnosing diet in both ungulates and primates is established. The method employs standard refractive light microscopy instead of scanning electron microscopy (SEM), and all use-wear features are counted or scored under low magnification (35 x). We use measurement systems analysis (variance components analysis of sources of measurement error) to evaluate the consistency and reproducibility of measurements using this method. The method is shown to have low intra- and inter-observer measurement error, and to effectively distinguish among graminivores, folivores, and frugivores. It can also be used to identify seed predators and to diagnose hard-object feeding. The method is also shown to be robust to the selection of measurement site; it works equally well when applied to upper or to lower molars. Finally, we use analysis of variance to examine the consistency of the signals across mammalian orders, and discriminant function analysis to develop dietary diagnostic tools for a set of "classified" primates with known diets. We test the success of these tools not merely by examining their a posteriori classification "success," but by using them to construct predicted dietary profiles for a sample of unclassified extant primate species, again with known diets.


Subject(s)
Diet/veterinary , Molar/anatomy & histology , Paleodontology/methods , Primates/physiology , Analysis of Variance , Animals , Artiodactyla/anatomy & histology , Artiodactyla/physiology , Haplorhini/anatomy & histology , Haplorhini/physiology , Microscopy/methods , Observer Variation , Paleodontology/instrumentation , Perissodactyla/anatomy & histology , Perissodactyla/physiology , Primates/anatomy & histology , Reproducibility of Results , Ruminants/anatomy & histology , Ruminants/physiology , Strepsirhini/anatomy & histology , Strepsirhini/physiology , Tooth Abrasion/etiology
6.
J Hum Evol ; 47(3): 145-69, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15337413

ABSTRACT

A new technique for molar use-wear analysis is applied to samples of all 16 species of extinct lemurs with known dentitions, as well as to a large comparative sample of extant primates. This technique, which relies on the light refractive properties of wear pits and scratches as seen under a standard stereoscopic microscope, has shown itself to be effective in distinguishing the diets of ungulates and extant primates. We draw dietary inferences for each of the 16 extinct lemur species in our database. There is a strong phylogenetic signal, with the Palaeopropithecidae showing use-wear signatures similar to those of the Indriidae; extinct lemurids (Pachylemur spp.) showing striking similarities to extant lemurids (except Hapalemur spp.); and Megaladapis showing similarities to Lepilemur spp. Only the Archaeolemuridae have dietary signatures unlike those of any extant lemurs, with the partial exception of Daubentonia. We conclude that the Archaeolemuridae were hard-object feeders; the Palaeopropithecidae were seed predators, consuming a mixed diet of foliage and fruit to varying degrees; Pachylemur was a fruit-dominated mixed feeder, but not a seed predator; and all Megaladapis were leaf browsers. There is no molar use wear evidence that any of the extinct lemurs relied on terrestrial foods (C4 grasses, tubers, rhizomes). This has possible implications for the role of the disappearance of wooded habitats in the extinction of lemurs.


Subject(s)
Diet/veterinary , Lemur/physiology , Molar/anatomy & histology , Paleodontology/methods , Analysis of Variance , Animals , Extinction, Psychological , Lemur/anatomy & histology , Madagascar , Microscopy/methods , Principal Component Analysis , Tooth Abrasion/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...