Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(8): e202115100, 2022 02 14.
Article in English | MEDLINE | ID: mdl-34825766

ABSTRACT

Vectorial catalysis-controlling multi-step reactions in a programmed sequence and by defined spatial localization in a microscale device-is an enticing goal in bio-inspired catalysis research. However, translating concepts from natural cascade biocatalysis into artificial hierarchical chemical systems remains a challenge. Herein, we demonstrate integration of two different surface-anchored nanometer-sized metal-organic frameworks (MOFs) in a microfluidic device for modelling vectorial catalysis. Catalyst immobilization at defined sections along the microchannel and a two-step cascade reaction was conducted with full conversion after 30 seconds and high turnover frequencies (TOF≈105  h-1 ).

2.
Langmuir ; 37(23): 6847-6863, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34081473

ABSTRACT

Metal-organic frameworks (MOFs) are an emerging class of porous materials composed of organic linkers and metal centers/clusters. The integration of MOFs onto the solid surface as thin films/coatings has spurred great interest, thanks to leveraging control over their morphology (such as size- and shape-regulated crystals) and orientation, flexible processability, and easy recyclability. These aspects, in synergy, promise a wide range of applications, including but not limited to gas/liquid separations, chemical sensing, and electronics. Dozens of innovative methods have been developed to manipulate MOFs on various solid substrates for academic studies and potential industrial applications. Among the developed deposition methods, the liquid-phase epitaxial layer-by-layer (LPE-LbL) method has demonstrated its merits over precise control of the thickness, roughness, homogeneity, and orientations, among others. Herein, we discuss the major developments of surface-mounted MOFs (SURMOFs) in LbL process optimization, summarizing the SURMOFs' performance in different applications, and put forward our perspective on the future of SURMOFs in terms of advances in the formulation, applications, and challenges. Finally, future prospects and challenges with respect to SURMOFs growth will be discussed, keeping the focus on their widening applications.

3.
Nat Commun ; 10(1): 346, 2019 01 21.
Article in English | MEDLINE | ID: mdl-30664645

ABSTRACT

Flexible metal-organic frameworks (MOFs) are structurally flexible, porous, crystalline solids that show a structural transition in response to a stimulus. If MOF-based solid-state and microelectronic devices are to be capable of leveraging such structural flexibility, then the integration of MOF thin films into a device configuration is crucial. Here we report the targeted and precise anchoring of Cu-based alkylether-functionalised layered-pillared MOF crystallites onto substrates via stepwise liquid-phase epitaxy. The structural transformation during methanol sorption is monitored by in-situ grazing incidence X-ray diffraction. Interestingly, spatially-controlled anchoring of the flexible MOFs on the surface induces a distinct structural responsiveness which is different from the bulk powder and can be systematically controlled by varying the crystallite characteristics, for instance dimensions and orientation. This fundamental understanding of thin-film flexibility is of paramount importance for the rational design of MOF-based devices utilising the structural flexibility in specific applications such as selective sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...