Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(39): 21213-21221, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37750755

ABSTRACT

In nature, aquaporins (AQPs) are proteins known for fast water transport through the membrane of living cells. Artificial water channels (AWCs) synthetic counterparts with intrinsic water permeability have been developed with the hope of mimicking the performances and the natural functions of AQPs. Highly selective AWCs are needed, and the design of selectivity filters for water is of tremendous importance. Herein, we report the use of self-assembled trianglamine macrocycles acting as AWCs in lipid bilayer membranes that are able to transport water with steric restriction along biomimetic H-bonding-decorated pores conferring selective binding filters for water. Trianglamine [(±)Δ, (mixture of diastereoisomers) and (R,R)3Δ and (S,S)3Δ], trianglamine hydrochloride (Δ.HCl), and alkyl-ureido trianglamines (n = 4, 6, 8, and 12) [(±)ΔC4, (±)ΔC8, (±)ΔC6, and (±)ΔC12] were synthesized for the studies presented here. The single-crystal X-ray structures confirmed that trianglamines form a tubular superstructure in the solid state. The water translocation is controlled via successive selective H-bonding pores (a diameter of 3 Å) and highly permeable hydrophobic vestibules (a diameter of 5 Å). The self-assembled alkyl-ureido-trianglamines achieve a single-channel permeability of 108 water molecules/second/channel, which is within 1 order of magnitude lower than AQPs with good ability to sterically reject ions and preventing the proton transport. Trianglamines present potential for engineering membranes for water purification and separation technologies.

2.
Carbohydr Polym ; 319: 121189, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567721

ABSTRACT

Cellulose-based materials are a sustainable alternative to polymers derived from petroleum. Cellulose nanocrystal (CNC) is a biopolymer belonging to this family; it is commonly known for its important physical and chemical properties and ability to form a film. Modifying CNC via electrostatic interaction provided by cationic polymers is a facile and promising technique to enlarge the application of CNC. Herein, we report the preparation of films, from blends of negatively charged CNC and positively charged poly (trimethyl aminoethyl methacrylate) (PTMAEMA). The interaction between CNC and PTMAEMA was verified by using a quartz crystal microbalance with dissipation monitoring (QCM-D), as well as by measuring the particle size and ζ-potential of the casting mixture. To favor the application of the nanocomposite film in water treatment, the film was supported on Whatman™ paper, and adsorption tests were conducted using perfluorooctanoic acid (PFOA) as a model compound for the family of persistent fluorinated pollutants known as PFAS (per- and polyfluoroalkyl substances).

3.
ACS Appl Mater Interfaces ; 15(36): 42942-42953, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37647569

ABSTRACT

Herein, we report for the first time a biocompatible cross-linked trianglamine (Δ) network for the efficient iodine removal from the vapor phase, water, and seawater. In the vapor phase, the cross-linked network could capture 6 g g-1 of iodine, ranking among the most performant materials for iodine vapor capture. In the liquid phase, this cross-linked network is also capable of capturing iodine at high rates from aqueous media (water and seawater). This network displayed fast adsorption kinetics, and they are fully recyclable. This study reveals the high affinity of iodine for the intrinsic cavity of the trianglamine. The synthesized materials are extremely interesting since they are environmentally friendly and inexpensive and the synthesis could easily be scaled up to be used as the material of choice in response to accidents in the nuclear industry.

4.
Membranes (Basel) ; 13(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36676872

ABSTRACT

Metal Organic Frameworks (MOFs) present high surface areas, various pore topology as well as good stabilities. The functionalities and porosity can be tuned by using different linkers with various functional groups and a wide range of linker lengths. These properties make them good candidates in membrane separation applications. In this work, we propose a simple UiO-66 MOF-based membrane fabrication method following two steps. First, the α-alumina tubular membrane support was dip-coated with MOF-polymer hybrid nanoparticles (NPs). These NPs were prepared via one-pot synthesis by adding poly (methacrylic acid)-b-poly (methyl methacrylate) (PMAA-b-PMMA) NPs to the classical acetic acid-modulated UiO-66 or UiO-66-NH2 synthesis formulation. Second, secondary membrane growth was applied to give rise to a continuous and homogeneous crystalline MOF membrane layer. The gas permeances (He, N2, CO2 and SF6) tests confirmed high membrane permeability with no macro-defects. The as-prepared membranes that were used for dye separation (Rhodamine B) showed relatively good separation capacity.

5.
Carbohydr Polym ; 294: 119790, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35868760

ABSTRACT

Cellulose nanocrystal (CNC) has recently gained much attention due to its unique properties such as abundancy, biodegradability, high strength, large surface area, functional ability, template structure, and sustainability. To broaden its application and enhance its compatibility with other materials, CNC can be modified via different methods. The modification is based on introducing new functions, including esterification, silylation, carbamation, polymerization, and so on. The application can concern many fields, such as polymer reinforcement, packaging, water treatment, textiles, biosensors, etc. Herein, we summarize the main approaches employed for the chemical modification and the use of the modified CNC material in the preparation of nanocomposite films and membranes, along with some emerging applications.


Subject(s)
Nanocomposites , Nanoparticles , Cellulose/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry , Polymerization , Polymers/chemistry
6.
Polymers (Basel) ; 13(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34833282

ABSTRACT

Organize the matter on an increasingly small scale is sought in order to increase the performance of materials. In the case of porous materials, such as filtration membranes, a compromise must be found between the selectivity provided by this nanostructuring and a permeability in particular linked to the existing pore volume. In this work, we propose an innovative waterborne approach consisting in co-assembling peptide amphiphiles (PA) which will provide nanostructuring and polyelectrolytes which will provide them with sufficient mechanical properties to sustain water pressure. C16-V3A3K3G-NH2 PA nanocylinders were synthesized and co-assembled with poly(sodium 4-styrenesulfonate) (PSSNa) into porous nano-fibrous network via electrostatic interactions. The ratio between C16-V3A3K3G-NH2 and PSSNa was studied to optimize the material structure. Since spontaneous gelation between the two precursors does not allow the material to be shaped, various production methods have been studied, in particular via tape casting and spray-coating. Whereas self-supported membranes were mechanically weak, co-assemblies supported onto commercial ultrafiltration membranes could sustain water pressure up to 3 bars while a moderate permeability was measured confirming the existence of a percolated network. The produced membrane material falls into the ultrafiltration range with a pore radius of about 7.6 nm.

7.
Polymers (Basel) ; 13(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34372106

ABSTRACT

A set of well-defined amphiphilic, semi-fluorinated di and triblock copolymers were synthesized via polymerization-induced self-assembly (PISA) under alcoholic dispersion polymerization conditions. This study investigates the influence of the length, nature and position of the solvophobic semi-fluorinated block. A poly(N,N-dimethylaminoethyl methacrylate) was used as the stabilizing block to prepare the di and tri block copolymer nano-objects via reversible addition-fragmentation chain transfer (RAFT) controlled dispersion polymerization at 70 °C in ethanol. Benzylmethacrylate (BzMA) and semi-fluorinated methacrylates and acrylates with 7 (heptafluorobutyl methacrylate (HFBMA)), 13 (heneicosafluorododecyl methacrylate (HCFDDMA)) and 21 (tridecafluorooctyl acrylate (TDFOA)) fluorine atoms were used as monomers for the core-forming blocks. The RAFT polymerization of these semi-fluorinated monomers was monitored by SEC and 1H NMR. The evolution of the self-assembled morphologies was investigated by transmission electron microscopy (TEM). The results demonstrate that the order of the blocks and the number of fluorine atoms influence the microphase segregation of the core-forming blocks and the final morphology of the nano-objects.

8.
Membranes (Basel) ; 11(2)2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33540798

ABSTRACT

In this study, we report the impact of the magnetic field on protein permeability through magnetic-responsive, block copolymer, nanocomposite membranes with hydrophilic and hydrophobic characters. The hydrophilic nanocomposite membranes were composed of spherical polymeric nanoparticles (NPs) synthesized through polymerization-induced self-assembly (PISA) with iron oxide NPs coated with quaternized poly(2-dimethylamino)ethyl methacrylate. The hydrophobic nanocomposite membranes were prepared via nonsolvent-induced phase separation (NIPS) containing poly (methacrylic acid) and meso-2,3-dimercaptosuccinic acid-coated superparamagnetic nanoparticles (SPNPs). The permeation experiments were carried out using bovine serum albumin (BSA) as the model solute, in the absence of the magnetic field and under permanent and cyclic magnetic field conditions OFF/ON (strategy 1) and ON/OFF (strategy 2). It was observed that the magnetic field led to a lower reduction in the permeate fluxes of magnetic-responsive membranes during BSA permeation, regardless of the magnetic field strategy used, than that obtained in the absence of the magnetic field. Nevertheless, a comparative analysis of the effect caused by the two cyclic magnetic field strategies showed that strategy 2 allowed for a lower reduction of the original permeate fluxes during BSA permeation and higher protein sieving coefficients. Overall, these novel magneto-responsive block copolymer nanocomposite membranes proved to be competent in mitigating biofouling phenomena in bioseparation processes.

9.
Polym Chem ; 12(29): 4235-4243, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-35126685

ABSTRACT

The synthesis of cyclic peptide-poly(vinylidene fluoride) (CP-PVDF) conjugates comprising (d-alt-l)-cyclopeptides as building blocks and their self-assembly into tube-like structures is described. By growing two PVDF polymeric chains from opposite sides of a preassembled cyclic-peptide macro-chain transfer agent, a PVDF-CP-PVDF conjugate was prepared. This "grafting-from" strategy, allowed the synthesis of the conjugate with high purity and using facile purification steps. The controlled self-assembly of the conjugate from DMF or DMSO solutions was carried out by addition of THF. This triggered the aggregation process that led to formation of tube-like structures. The mean length and width of the PVDF-CP-PVDF tubes were measured using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Surprisingly, the self-assembly of the CP-PVDF conjugates in DMF/THF allowed the preparation of long (up to 25 µm) tube-like structures. The formation of such long tubular peptide-polymer aggregates, based on the stacking of cyclopeptides, is unprecedented and is believed to rely on synergetic effects between the stacking of the cyclic peptide and the interactions of the fluoropolymer-peptide conjugates.

10.
Molecules ; 25(20)2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33080832

ABSTRACT

A well-defined block copolymer brush poly(glycidyl methacrylate)-graft-(poly(methyl methacrylate)-block- poly(oligo(ethylene glycol) methyl ether methacrylate)) (PGMA-g-(PMMA-b-POEGMA)) is synthesized via grafting from an approach based on a combination of click chemistry and reversible addition-fragmentation chain transfer (RAFT) polymerization. The resulting block copolymer brushes were characterized by 1H-NMR and size exclusion chromatography (SEC). The self-assembly of the block copolymer brush was then investigated under selective solvent conditions in three systems: THF/water, THF/CH3OH, and DMSO/CHCl3. PGMA-g-(PMMA-b-POEGMA) was found to self-assemble into spherical micelle structures as analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The average size of the particles was much smaller in THF/CH3OH and DMSO/CHCl3 as compared with the THF/water system. Thin film of block copolymer brushes with tunable surface properties was then prepared by the spin-coating technique. The thickness of the thin film was confirmed by scanning electron microscopy (SEM). Atom force microscopy (AFM) analysis revealed a spherical morphology when the block copolymer brush was treated with poor solvents for the backbone and hydrophobic side chains. The contact angle measurements were used to confirm the surface rearrangements of the block copolymer brushes.


Subject(s)
Methylmethacrylates/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Polymethyl Methacrylate/chemistry , Click Chemistry , Epoxy Compounds/chemistry , Methacrylates/chemical synthesis , Methacrylates/chemistry , Methylmethacrylates/chemical synthesis , Micelles , Microscopy, Atomic Force , Polyethylene Glycols/chemical synthesis , Polymerization , Polymers/chemical synthesis , Polymethyl Methacrylate/chemical synthesis , Spectroscopy, Fourier Transform Infrared , Surface Properties , Water/chemistry
11.
Molecules ; 25(17)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899379

ABSTRACT

To date, amphiphilic block copolymers (BCPs) containing poly(vinylidene fluoride-co-hexafluoropropene) (P(VDF-co-HFP)) copolymers are rare. At moderate content of HFP, this fluorocopolymer remains semicrystalline and is able to crystallize. Amphiphilic BCPs, containing a P(VDF-co-HFP) segment could, thus be appealing for the preparation of self-assembled block copolymer morphologies through crystallization-driven self-assembly (CDSA) in selective solvents. Here the synthesis, characterization by 1H and 19F NMR spectroscopies, GPC, TGA, DSC, and XRD; and the self-assembly behavior of a P(VDF-co-HFP)-b-PEG-b-P(VDF-co-HFP) triblock copolymer were studied. The well-defined ABA amphiphilic fluorinated triblock copolymer was self-assembled into nano-objects by varying a series of key parameters such as the solvent and the non -solvent, the self-assembly protocols, and the temperature. A large range of morphologies such as spherical, square, rectangular, fiber-like, and platelet structures with sizes ranging from a few nanometers to micrometers was obtained depending on the self-assembly protocols and solvents systems used. The temperature-induced crystallization-driven self-assembly (TI-CDSA) protocol allowed some control over the shape and size of some of the morphologies.


Subject(s)
Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Crystallization , Micelles , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Polyethylene Glycols/chemical synthesis , Polymerization , Polyvinyls/chemical synthesis , Temperature
12.
Membranes (Basel) ; 10(5)2020 May 22.
Article in English | MEDLINE | ID: mdl-32455983

ABSTRACT

Better and more efficient membranes are needed to face imminent and future scientific, technological and societal challenges. New materials endowed with enhanced properties are required for the preparation of such membranes. Metal and Covalent Organic Frameworks (MOFs and COFs) are a new class of crystalline porous materials with large surface area, tuneable pore size, structure, and functionality, making them a perfect candidate for membrane applications. In recent years an enormous number of articles have been published on the use of MOFs and COFs in preparation of membranes for various applications. This review gathers the work reported on the synthesis and preparation of membranes containing MOFs and COFs in the last 10 years. Here we give an overview on membranes and their use in separation technology, discussing the essential factors in their synthesis as well as their limitations. A full detailed summary of the preparation and characterization methods used for MOF and COF membranes is given. Finally, applications of these membranes in gas and liquid separation as well as fuel cells are discussed. This review is aimed at both experts in the field and newcomers, including students at both undergraduate and postgraduate levels, who would like to learn about preparation of membranes from crystalline porous materials.

13.
Membranes (Basel) ; 9(8)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31374830

ABSTRACT

In recent years, block copolymer micellar assemblies with the formation of structured nanoparticles have been considered as an emerging technology in membrane science. In this work, the poly(methyl methacrylate)-block-poly(sulfobetaine methacrylate) copolymer was directly synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization and self-assembled in a selective medium (2,2,2-trifluroethanol/water). Then, poly(methyl methacrylate)-block-poly(sulfobetaine methacrylate) copolymers were casted onto a commercial PVDF membrane to form a thin porous selective layer. The prepared nanoparticles and the resulting membranes were fully characterized using microscopy methods (SEM and AFM), whereas the membrane performance was evaluated in terms of permeability and the molecular weight cut off. The results from this study demonstrate the preparation of an ultrafiltration membrane made from the assembly of poly(methyl methacrylate)-block-poly(sulfobetaine methacrylate) copolymer micelles on the top of a PVDF membrane in the form of thin film. The copolymer chain orientation leads to a membrane surface enriched in hydrophilic PSBMA, which confers a suitable behavior for aqueous solution filtration on the membrane, while preserving the high chemical and mechanical resistance of the PVDF.

14.
Macromol Rapid Commun ; 40(2): e1800333, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30027594

ABSTRACT

This article presents the synthesis of poly(methacrylic acid)-b-poly(methyl methacrylate) diblock copolymer via polymerization-induced self-assembly in the presence of iron-oxide nanoparticles. Detailed phase diagrams with and without inorganic nanoparticles were constructed. Scanning transmission electron microscopy and energy dispersive X-ray photometry studies confirme the decoration of the polymeric nanoparticles with the iron-oxide nanoparticles. These hybrid nanoparticles were used to prepare porous thin film membranes by spin coating. Finally, the magneto-responsive properties of the membranes were assessed using water filtration tests in the presence and absence of a magnetic field.


Subject(s)
Chemistry Techniques, Synthetic/methods , Magnetite Nanoparticles/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemistry , Polymethyl Methacrylate/chemistry , Coated Materials, Biocompatible/chemistry , Magnetic Fields , Magnetite Nanoparticles/ultrastructure , Membranes, Artificial , Microscopy, Electron, Scanning Transmission , Nanoparticles/ultrastructure , Polymerization , Polymers/chemical synthesis , Porosity
15.
Polymers (Basel) ; 10(7)2018 Jul 03.
Article in English | MEDLINE | ID: mdl-30960658

ABSTRACT

The preparation of well-arranged nano-porous thin films from an ABA triblock copolymer of polystyrene-block-poly(sodium 4-styrenesulfonate)-block-polystyrene (PS-PNaSS-PS) is reported. This copolymer was self-assembled in a N,N-dimethylformamide (DMF)/water mixture and the resulting micellar solution was used to prepare thin films via the compact packing of the flower-like micelles using spin coating method. The films were characterized by several microscopy techniques such as TEM, AFM, and SEM. Permeation test was performed to highlight the interconnected porous nature of the polymeric network obtained. Under applied water pressure, the micellar morphology was altered and a partial fusion of the micelles was observed that resulted in a change in the water permeability. Such hydrophilic nanoporous thin films with negatively charged interface could find applications in membrane filtration.

16.
Soft Matter ; 13(38): 6689-6693, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28948266

ABSTRACT

Herein, a membrane prepared from the self-assembly of poly(styrene-co-acrylonitrile)-b-poly(ethylene oxide)-b-poly(styrene-co-acrylonitrile) micelles is found to exhibit translocation of nano-objects dispersed in aqueous solution. With the water flow as a driving force, temporary pores are created in between the micelles to facilitate the passage of nano-objects. These temporary pores close afterwards through a self-healing mechanism. As main results, polystyrene and silica nanoparticles exhibited a selective translocation directly influenced by their size and applied pressure.

17.
ACS Macro Lett ; 6(4): 393-398, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-35610848

ABSTRACT

Poly(vinylidene fluoride)-containing block copolymers are difficult to prepare and still very rare in spite of their potential use in high added value applications. This communication describes in detail the synthesis of unprecedented poly(ethyl vinyl ether)-block-poly(vinylidene fluoride) (PEVE-b-PVDF) block copolymers (BCP) via the sequential combination of cationic RAFT polymerization of vinyl ethers and radical RAFT polymerization of vinylidene fluoride (VDF). Dithiocarbamate chain transfer agents were found to efficiently control the radical RAFT polymerization of VDF and to be suitable for the preparation of PEVE-b-PVDF BCP. These new block copolymers composed of incompatible polymer segments may find applications owing to their phase segregation and self-assembly behavior.

18.
Methods Mol Biol ; 1367: 89-108, 2016.
Article in English | MEDLINE | ID: mdl-26537467

ABSTRACT

Glycopolymer-based nanostructures are invaluable tools to both study biological phenomena and to design future targeted drug delivery systems. Polymerization-induced self-assembly, especially RAFT aqueous dispersion polymerization is a unique method to prepare such polymer nanostructures, as it enables the preparation of very-well-defined morphologies at very high concentrations. Here we describe the implementation of PISA to the synthesis of galactosylated spheres, wormlike micelles and vesicles, and the preliminary results of cell toxicity, cell uptake, and cargo delivering capacity of galactose-decorated vesicles.


Subject(s)
Drug Carriers/chemical synthesis , Galactose/chemistry , Glycoconjugates/chemical synthesis , Nanostructures/chemistry , Polymerization , Polymethacrylic Acids/chemical synthesis , Cell Line , Drug Carriers/pharmacology , Fibroblasts/drug effects , Glycoconjugates/chemistry , Glycoconjugates/pharmacology , Humans , Polymethacrylic Acids/pharmacology
19.
Macromol Biosci ; 16(1): 57-62, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26222768

ABSTRACT

Amphiphilic diblock copolymer containing randomly distributed positive and negative charged monomers are synthesized using RAFT polymerization technique to be used as anti-bioadhesion coatings for hydrophobic surfaces. Quaternized 2-(dimethylamino) ethyl methacrylate and potassium 3-sulfopropyl methacrylate (P[qDMAEMA-co-KSPMA]) are randomly polymerized to yield an anti-bioadhesion block which is, in one pot, copolymerized with styrene as an anchoring block. This copolymer has demonstrated high anti-bioadhesion properties to avoid the blood clotting in medical devices through a simple and facile approach to preparation of pseudozwitterionic copolymers.


Subject(s)
Blood , Polymers/chemistry , Adsorption , Coated Materials, Biocompatible , Humans , Methacrylates/chemistry , Polymerization , Styrene/chemistry
20.
J Am Chem Soc ; 136(31): 11100-6, 2014 Aug 06.
Article in English | MEDLINE | ID: mdl-25026466

ABSTRACT

Block copolymer self-assembly is normally conducted via post-polymerization processing at high dilution. In the case of block copolymer vesicles (or "polymersomes"), this approach normally leads to relatively broad size distributions, which is problematic for many potential applications. Herein we report the rational synthesis of low-polydispersity diblock copolymer vesicles in concentrated solution via polymerization-induced self-assembly using reversible addition-fragmentation chain transfer (RAFT) polymerization of benzyl methacrylate. Our strategy utilizes a binary mixture of a relatively long and a relatively short poly(methacrylic acid) stabilizer block, which become preferentially expressed at the outer and inner poly(benzyl methacrylate) membrane surface, respectively. Dynamic light scattering was utilized to construct phase diagrams to identify suitable conditions for the synthesis of relatively small, low-polydispersity vesicles. Small-angle X-ray scattering (SAXS) was used to verify that this binary mixture approach produced vesicles with significantly narrower size distributions compared to conventional vesicles prepared using a single (short) stabilizer block. Calculations performed using self-consistent mean field theory (SCMFT) account for the preferred self-assembled structures of the block copolymer binary mixtures and are in reasonable agreement with experiment. Finally, both SAXS and SCMFT indicate a significant degree of solvent plasticization for the membrane-forming poly(benzyl methacrylate) chains.

SELECTION OF CITATIONS
SEARCH DETAIL
...