Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 1077588, 2022.
Article in English | MEDLINE | ID: mdl-36601402

ABSTRACT

Plastics are of great significance in today's world due to their extensive use such as packaging food and carrying other goods, which have improved the quality of human life. However, plastics have low biodegradability and are persistent in the environment, becoming a major source of pollution. With regard to the current methods used in the management of plastic wastes, the degradation of plastics using beneficial soil microorganisms has recently gained attention due to their ability to degrade different types of plastics including polyethylene (PE) polymers. The study herein was conducted to isolate and identify microorganisms from agricultural soils capable of degrading plastics. Soil samples were inoculated into nutrient, potato dextrose, and starch-casein agar for the isolation of bacteria, fungi, and actinomycetes, respectively. During isolation, fungi and bacterial plates were incubated for 5 days and for 14 days, respectively. The population of bacteria ranged from 1 × 105 to 1.215 × 105 and that of fungi from 1.604 × 104 to 8.6 × 104 whereby actinomycetes ranged from 1.045 × 105 to 2.995 × 105 CFU/g of soil. However, the tested microorganisms showed significant (p ≤ 0.05) differences in the ability to degrade PE bags and bottles as depicted by the diameters of clear zones around the colonies. The diameters of clear zones ranged from 19.3 to 47.5 mm and 25.9 to 32.2 mm after 17 days for bacteria and actinomycetes, respectively, and those of fungi ranged from 30.0 to 66.3 mm after 13 days. Among the bacteria, actinomycetes, and fungi, unsequenced bacterial and actinomycete isolates B1 and A3 as well as Aspergillus sp. (F7) were the most efficient degraders of PE plastic bags. This retrospective study sheds light on our understanding and the need for the bioprospecting of agricultural soils, water bodies, and landfills containing plastic wastes that could lead to the identification of more efficient microbial species with the ability to degrade plastics.

2.
Heliyon ; 7(6): e07331, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34195433

ABSTRACT

Nitrogen (N), phosphorus (P) and potassium (K) fertiliser application, was able to counteract growth reductions, in cassava cultivated on nutrient poor soils, under one water stress condition. It however remains to be seen, whether N, P and K fertiliser application, would produce similar results, across different water stress conditions. A study was therefore conducted to determine how N, P and K fertiliser application, would influence cassava growth on nutrient poor soils, under various water stress conditions. Effects on new leaf formation and leaf size were also investigated. The study was a 2×3×4 factorial pot experiment, in a randomised complete block design. It included: two cassava varieties, three water stress levels and four fertiliser treatments. The water stress levels kept some plants watered at field capacities of 30% (severe water stress), 60% (mild water stress) and 100% (zero water stress). The fertiliser treatments consisted of a control (no fertiliser), a sole K fertiliser treatment (25 mg K/kg), a moderate N, P and K fertiliser treatment (25 mg N + 5 mg P + 25 mg K/kg) and a high N, P and K fertiliser treatment (50 mg N + 13 mg P + 50 mg K/kg). All data were analysed using the analysis of variance. Cassava growth was assessed by monitoring changes in the dry shoot mass of cassava plants. High and moderate N, P and K fertiliser application, produced cassava plants with higher and similar dry shoot masses, under mild water stress (10.5 g/plant, SE = 0.6 and 9.0 g/plant, SE = 0.6, respectively). High N, P and K fertiliser application, however gave cassava the highest dry shoot mass, under severe water stress (7.9 g/plant, SE = 0.4). Relatively high cassava growth was consistently achieved with high N, P and K fertiliser application, across all water stress conditions.

3.
Sci Total Environ ; 785: 147301, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33933767

ABSTRACT

The effort to increase the sustainable supply of food and fibre is challenged by the potential for increased greenhouse gas (GHG) emissions from farming systems with intensified production systems. This study aimed at quantifying soil N2O emissions from smallholder organic and conventional cotton production practices in a semi-arid area, Meatu, Northern Tanzania. Field experiments were conducted to quantify N2O emissions under (i) current practices with organic (3 Mg ha-1 farmyard manure (FYM)) and conventional (30 kg mineral N ha-1) cultivation; (ii) a high input practice with organic (5 Mg ha-1 FYM) and conventional (60 kg mineral N ha-1) cultivation; and (iii) an integrated practice with organic (3 Mg FYM + legume intercropping) and conventional (30 kg N + 3 Mg ha-1 FYM) cultivation. In both organic and conventional farming, control treatments with no fertilizer application were included. The study was performed over two growing seasons, where season 1 was rather wet and season 2 was rather dry. Static chambers were used for in-situ measurement of N2O emission from soil. The current organic and conventional cotton farming practices did not differ (P > 0.05) in cumulative area-scaled and yield-scaled N2O emissions. High input conventional cotton showed higher area scaled N2O emissions than organic cotton during the wetter season, but not during the drier season. The inorganic fertilizer + FYM combination did not differ (P > 0.05) in area- and yield-scaled N2O emissions from conventional practice. Intercropping cotton and legumes did not affect (P > 0.05) N2O emission compared to 3 Mg FYM ha-1. The emission factors for both conventional and organic systems were generally above 1% in the dry season 2, but below 1% in the wetter season 1. The use of organic and inorganic fertilizers at rates up to 60 kg N ha-1, FYM-inorganic fertilizer combination, and cotton-legume intercropping increased yields, while N2O emissions stayed low, in particular with use of mineral fertilizers.

4.
PLoS One ; 15(2): e0228641, 2020.
Article in English | MEDLINE | ID: mdl-32053630

ABSTRACT

The use of plant tissue analysis as a tool for attaining low cyanogenic glucoside levels in cassava roots, has hardly been investigated. Just as the quality of crops is improved through the use of plant tissue analysis, the same can probably be done to consistently attain the lowest possible cyanogenic glucoside levels in cassava roots. High levels of cyanogenic glucosides in consumed fresh cassava roots or in their products have the potential of causing cyanide intoxication, hence the need to lower them. An experiment was thus conducted to assess the occurrence of meaningful relationships between plant nutritional status and cyanogenic glucoside production in cassava roots. Total hydrogen cyanide (HCN) levels in cassava roots were used to assess cyanogenic glucoside production. Using NPK fertiliser application to induce changes in plant nutritional status, the main objective of the study was investigated using the following sub-objectives; (1) to determine the effects of increased NPK fertiliser application on cassava root HCN levels; (2) and to show the occurrence of relationships between changes in nutrient levels in plant 'indicator tissue' and HCN levels in cassava roots. The study was a field experiment laid out as a split-plot in a randomized complete block design with three replicates. It was repeated in two consecutive years, with soil nutrient deficiencies only being corrected in the second year. The varieties Salanga, Kalinda, Supa and Kiroba were used in the experiment, while the NPK fertiliser treatments included; a control with no fertiliser applied; a moderate NPK treatment (50 kg N + 10 kg P + 50 kg K /ha); and a high NPK treatment (100 kg N + 25 kg P + 100 kg K /ha). A potassium only treatment (50 kg K/ha) was also included, but mainly for comparison. The root HCN levels of Salanga, Kalinda and Kiroba were significantly influenced by NPK fertiliser application in at least one of the two field experiments, while those of Supa remained uninfluenced. Changes in plant nutritional status in response to fertiliser application were thus shown to influence cyanogenic glucoside production. The results of the multiple linear regression analysis for the first field experiment, generally showed that the root HCN levels of some cassava varieties could have been 'reduced' by decreasing concentrations of nitrogen, potassium and magnesium in plants, or by improving plant calcium concentrations along with NPK fertiliser application. However, in the second field experiment (with corrected soil nutrient deficiencies) the regression analysis generally showed that the root HCN levels of some cassava varieties could have been 'reduced' by improving either one or a combination of the nutrients phosphorous, zinc and potassium in plants along with NPK fertiliser application. Although the results obtained in the two experiments had been contradicting due to slight differences in how they were conducted, the study had nonetheless demonstrated the occurrence of meaningful relationships between plant nutritional status and cyanogenic glucoside production; confirming the possible use of plant tissue analysis in predicting fertiliser needs for the consistent attainment of low cyanogenic glucosides in cassava roots.


Subject(s)
Fertilizers , Glucosides/analysis , Hydrogen Cyanide/analysis , Manihot/chemistry , Nitriles/analysis , Plant Roots/chemistry , Agriculture , Crops, Agricultural/chemistry , Cyanides/analysis , Glycosides/analysis , Hydrogen-Ion Concentration , Linear Models , Nitrogen/analysis , Phosphorus/analysis , Potassium/analysis , Soil
5.
PLoS One ; 14(5): e0216708, 2019.
Article in English | MEDLINE | ID: mdl-31083702

ABSTRACT

Soils in areas affected by konzo (a cassava cyanide intoxication paralytic disorder) are predominantly infertile and probably unable to supply cultivated cassava with the nutrients it needs to achieve optimal growth. Soil nutrient supply in these areas could also be influencing cyanogenic glucoside production in cassava, however there is hardly any knowledge on this. An assessment of soil nutrient levels on crop fields in konzo-affected areas was therefore carried out to determine their adequacy for optimal cassava growth. Konzo-affected Mtwara region of Tanzania, was used as a case study. Whether soil nutrient supply influences cyanogenic glucoside production in cassava cultivated in konzo-affected areas and how it could be doing this, was additionally investigated. To investigate this, correlations between total hydrogen cyanide (HCN) levels (a measure of cyanogenic glucoside content) in cassava roots and various soil nutrient levels on crops fields were carried out. This was followed by an investigation of relationships between cases of cassava cyanide intoxication and soil nutrient levels on crop fields from which the consumed toxic cassava roots had been harvested. Cases of cassava cyanide intoxication were used as a proxy for high cyanogenic glucoside levels in cassava roots. Logistic regression analysis was used in the latter investigation. Other important non-nutrient soil chemical characteristics, like pH and soil organic carbon, were also included in all analysis performed. The results revealed that most soil nutrients known to have reducing effects on cassava cyanogenic glucosides, like potassium (mean = 0.09 cmol/kg, SD = 0.05 cmol/kg), magnesium (mean = 0.26 cmol/kg, SD = 0.14 cmol/kg) and zinc (mean = 1.34 mg/kg, SD = 0.26 mg/kg) were deficient on several crop fields. The results also showed that cyanogenic glucosides in cassava roots could be increased with the increased supply of sulphur in soils in bitter cassava varieties (rs = 0.593, p = 0.032), and with the increased supply of P in soils in all cassava varieties (rs = 0.486, p = 0.026). The risk of cassava cyanide intoxication occurring (and thus high cyanogenic glucoside levels in cassava) was found to be likely increased by cultivating cassava on soils with high pH (X2 = 8.124, p = 0.004) and high iron (X2 = 5.740, p = 0.017). The study managed to establish that cassava grows under conditions of severe nutrient stress and that soil nutrient supply influences cyanogenic glucoside production in cassava cultivated in konzo-affected areas of Mtwara region. Despite the multiple soil nutrient deficiencies on crop fields, low soil fertility was however not the only probable cause of increased cyanogenic glucosides in cassava, as high soil nutrient levels were also found to be potential contributors.


Subject(s)
Glycosides/analysis , Manihot/growth & development , Soil/chemistry , Carbon/analysis , Cyanides/analysis , Glucosides/analysis , Glycosides/metabolism , Hydrogen-Ion Concentration , Manihot/metabolism , Nutrients/metabolism , Plant Roots/chemistry , Potassium/analysis , Tanzania , Thiocyanates/analysis
6.
PLoS One ; 14(4): e0215527, 2019.
Article in English | MEDLINE | ID: mdl-30998724

ABSTRACT

In areas where konzo (a cassava cyanide related paralytic disorder) persists, the agronomic factors causing increased cyanogenic glucoside levels in cassava, during periods without water stress, are hardly known. However, through their assessment of cassava root toxicity, using its bitter taste, farmers may have noticed factors unrelated to water stress that additionally influence the cyanogenic glucoside content of cassava cultivated in these areas. Increased cassava root bitterness is often associated with an increase in cyanogenic glucoside levels, making it a good indicator of changes in root cyanogenic glucoside content. Bitter cassava varieties that are preferentially planted by people living in most konzo-affected areas, are an additional known contributor to high cyanogenic glucosides. It is water stress that further increases the inherent toxicity of the planted bitter cassava varieties. Using konzo-affected Mtwara region in Tanzania as a case study, a household survey was carried out to identify the overlooked agronomic factors that additionally influence cyanogenic glucoside levels in cassava cultivated in konzo-affected areas. A total of 120 farmers were interviewed and they mentioned a number of factors unrelated to water stress, as agronomic factors that influenced cassava root bitterness and hence cyanogenic glucoside production in cassava. The mentioned factors included; certain soil characteristics (14.2%), plant age at harvest (7.5%), poor weeding (0.8%), piecemeal harvesting (0.8%), and branch pruning (0.8%). The revealed factors constitute permanent environmental characteristics and crop management practices commonly used by farmers living in konzo-affected Mtwara region in Tanzania. The revealed factors could be contributing to increased cyanogenic glucoside levels in cassava, during periods without water stress in areas where konzo persists.


Subject(s)
Farmers , Glycosides/metabolism , Manihot/growth & development , Plant Roots/growth & development , Taste , Thiocyanates/metabolism , Humans , Perception , Tanzania
7.
Int J Microbiol ; 2017: 2096314, 2017.
Article in English | MEDLINE | ID: mdl-28584528

ABSTRACT

Mycorrhizal associations contribute to the sustainability of crop production systems through their roles in nutrient cycling and other benefits in the soil-plant ecosystems. A two-year study was conducted on the Alfisols of Lilongwe and Dowa districts, Central Malawi, to assess the vesicular-arbuscular mycorrhizal (VAM) fungal colonisation levels in pigeon pea, cowpea, and maize grown in sole cropping, legume-cereal, and legume-legume intercropping systems and in the maize grown in short rotation (year 2) as influenced by the previous cropping systems and N fertilizer application. The gridline intersect method was used to assess the VAM fungal colonisation levels. Results showed that all treatments that included legumes whether grown as sole crop, in legume-cereal or in legume-legume cropping systems in the previous year, had significantly higher (P < 0.05) VAM fungal colonisation of the rotational maize crop roots by a range 39% to 50% and 19% to 47% than those in maize supplied and not supplied with N fertilizer, respectively, in a maize-maize short rotation, at the Lilongwe site. A similar trend was reported for the Dowa site. Furthermore, there were positive correlations between VAM fungal colonisation and the plant P content, dry matter yield, and nodule numbers. Further studies may help to assess the diversity of VAM fungal species in Malawi soils and identify more adaptive ones for inoculation studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...