Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Med Int Health ; 17(10): 1192-201, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22863170

ABSTRACT

To understand the drivers and consequences of malaria in epidemic-prone regions, it is important to know whether epidemics emerge independently in different areas as a consequence of local contingencies, or whether they are synchronised across larger regions as a result of climatic fluctuations and other broad-scale drivers. To address this question, we collected historical malaria surveillance data for the Amhara region of Ethiopia and analysed them to assess the consistency of various indicators of malaria risk and determine the dominant spatial and temporal patterns of malaria within the region. We collected data from a total of 49 districts from 1999-2010. Data availability was better for more recent years and more data were available for clinically diagnosed outpatient malaria cases than confirmed malaria cases. Temporal patterns of outpatient malaria case counts were correlated with the proportion of outpatients diagnosed with malaria and confirmed malaria case counts. The proportion of outpatients diagnosed with malaria was spatially clustered, and these cluster locations were generally consistent from year to year. Outpatient malaria cases exhibited spatial synchrony at distances up to 300 km, supporting the hypothesis that regional climatic variability is an important driver of epidemics. Our results suggest that decomposing malaria risk into separate spatial and temporal components may be an effective strategy for modelling and forecasting malaria risk across large areas. They also emphasise both the value and limitations of working with historical surveillance datasets and highlight the importance of enhancing existing surveillance efforts.


Subject(s)
Climate , Epidemics , Malaria/epidemiology , Ethiopia/epidemiology , Humans , Population Surveillance , Risk Factors
2.
Malar J ; 11: 165, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22583705

ABSTRACT

BACKGROUND: Malaria is one of the leading public health problems in most of sub-Saharan Africa, particularly in Ethiopia. Almost all demographic groups are at risk of malaria because of seasonal and unstable transmission of the disease. Therefore, there is a need to develop malaria early-warning systems to enhance public health decision making for control and prevention of malaria epidemics. Data from orbiting earth-observing sensors can monitor environmental risk factors that trigger malaria epidemics. Remotely sensed environmental indicators were used to examine the influences of climatic and environmental variability on temporal patterns of malaria cases in the Amhara region of Ethiopia. METHODS: In this study seasonal autoregressive integrated moving average (SARIMA) models were used to quantify the relationship between malaria cases and remotely sensed environmental variables, including rainfall, land-surface temperature (LST), vegetation indices (NDVI and EVI), and actual evapotranspiration (ETa) with lags ranging from one to three months. Predictions from the best model with environmental variables were compared to the actual observations from the last 12 months of the time series. RESULTS: Malaria cases exhibited positive associations with LST at a lag of one month and positive associations with indicators of moisture (rainfall, EVI and ETa) at lags from one to three months. SARIMA models that included these environmental covariates had better fits and more accurate predictions, as evidenced by lower AIC and RMSE values, than models without environmental covariates. CONCLUSIONS: Malaria risk indicators such as satellite-based rainfall estimates, LST, EVI, and ETa exhibited significant lagged associations with malaria cases in the Amhara region and improved model fit and prediction accuracy. These variables can be monitored frequently and extensively across large geographic areas using data from earth-observing sensors to support public health decisions.


Subject(s)
Malaria/epidemiology , Remote Sensing Technology/methods , Ethiopia/epidemiology , Humans , Plant Development , Rain , Risk Assessment , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...