Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Genet Evol ; 92: 104911, 2021 08.
Article in English | MEDLINE | ID: mdl-33991672

ABSTRACT

Metacercariae of trematodes from the genus Diplostomum are major helminth pathogens of freshwater fish, infecting the eye or the brain. The taxonomy of the genus Diplostomum is complicated, and has recently been based mainly on the molecular markers. In this study, we report the results of the morphological and molecular genetic analysis of diplostomid metacercaria from the brain of the minnow Phoxinus phoxinus from three populations in Fennoscandia (Northern Europe) and one population in Mongolia (East Asia). We obtained the data on the polymorphism of the partial mitochondrial cox1 gene and ribosomal ITS1-5.8S-ITS2 region of these parasites. РСА-based morphological analysis revealed that the parasites in the Asian and the European groups of Diplostomum sp. were distinctly different. Metacercariae from the brain of Mongolian minnows were much larger than those from the brain of Fennoscandian minnows but had much fewer excretory granules. Considering that the two study regions were separated by a distance of about 4500 km, we also tested the genetic homogeneity of their host, the minnow, using the mitochondrial cytb gene. It was shown that Diplostomum-infected minnows from Mongolia and Fennoscandia represented two previously unknown separate phylogenetic lineages of the genus Phoxinus. Both molecular and morphological analysis demonstrated that the parasites from Fennoscandia belonged the species Diplostomum phoxini, while the parasites from Mongolia belonged to a separate species, Diplostomum sp. MТ.Each of the two studied Diplostomum spp. was associated with a specific, and previously unknown, genealogical lineage of its second intermediate host, P. phoxinus.


Subject(s)
Brain/parasitology , Fish Diseases/pathology , Metacercariae/physiology , Trematoda/physiology , Trematode Infections/veterinary , Animals , Brain/anatomy & histology , Cyprinidae , Europe , Asia, Eastern , Fish Diseases/parasitology , Trematode Infections/parasitology , Trematode Infections/pathology
2.
BMC Genomics ; 21(1): 351, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32393253

ABSTRACT

BACKGROUND: The hybridization of female D. raddei and male D. valentini gave rise to the parthenogenetic Caucasian rock lizard Darevskia unisexualis. A previously identified genetic polymorphism in the species consisted of one common and two allozyme clones. Analysis of microsatellites and single nucleotide polymorphisms (SNPs) from the three species yields estimates of clonal diversity and tests the hypothesis of a single origin for D. unisexualis. RESULTS: Genotyping and sequencing of four microsatellite-containing loci for 109 specimens of D. unisexualis, 17 D. valentini, and 45 D. raddei nairensis identified 12 presumptive clones, including one widespread and 11 rare clones. Most individuals in some localities had a rare clone. Clone-specific alleles in D. unisexualis were compared with those of the parental species. The results inferred a single hybridization event. Post-formation mutations best explain the less common clones. CONCLUSIONS: Interspecific analyses identify alleles inherited by D. unisexualis from its bisexual ancestors. SNP analyses fail to reject the hypothesis of a single interspecific origin of D. unisexualis, followed by microsatellite mutations in this initial clone. Microsatellites detect higher clonal diversity in D. unisexualis compared to allozymes and identify the likely origins of clones. Our approach may be applicable to other unisexual species whose origins involve interspecific hybridization.


Subject(s)
Evolution, Molecular , Genetic Variation , Lizards/genetics , Parthenogenesis/genetics , Alleles , Animals , Cytochromes b/genetics , Female , Genotype , Hybridization, Genetic , Isoenzymes/genetics , Male , Microsatellite Repeats/genetics , Polymorphism, Single Nucleotide
3.
Mob DNA ; 10: 21, 2019.
Article in English | MEDLINE | ID: mdl-31114637

ABSTRACT

BACKGROUND: Genomes of eukaryotes are inhabited by myriads of mobile genetic elements (MGEs) - transposons and retrotransposons - which play a great role in genome plasticity and evolution. A lot of computational tools were developed to annotate them either in genomic assemblies or raw reads using de novo or homology-based approaches. But there has been no pipeline enabling users to get coding and flanking sequences of MGEs suitable for a downstream analysis from genome assemblies. RESULTS: We developed a new pipeline, MGERT (Mobile Genetic Elements Retrieving Tool), that automates all the steps necessary to obtain protein-coding sequences of mobile genetic elements from genomic assemblies even if no previous knowledge on MGE content of a particular genome is available. CONCLUSIONS: Using MGERT, researchers can easily find MGEs, their coding and flanking sequences in the genome of interest. Thus, this pipeline helps researchers to focus on the biological analysis of MGEs rather than excessive scripting and pipelining.

4.
BMC Genomics ; 19(1): 979, 2018 Dec 29.
Article in English | MEDLINE | ID: mdl-30594123

ABSTRACT

BACKGROUND: The parthenogenetic Caucasian rock lizard Darevskia armeniaca, like most other parthenogenetic vertebrate species, originated through interspecific hybridization between the closely related sexual Darevskia mixta and Darevskia valentini. Darevskia armeniaca was shown to consist of one widespread allozyme clone and a few rare ones, but notwithstanding the origin of clonal diversity remains unclear. We conduct genomic analysis of D. armeniaca and its parental sexual species using microsatellite and SNP markers to identify the origin of parthenogenetic clonal lineages. RESULTS: Four microsatellite-containing loci were genotyped for 111 specimens of D. armeniaca, 17 D. valentini, and four D. mixta. For these species, a total of 47 alleles were isolated and sequenced. Analysis of the data revealed 13 genotypes or presumptive clones in parthenogenetic D. armeniaca, including one widespread clone, two apparently geographically restricted clones, and ten rare clones. Comparisons of genotype-specific markers in D. armeniaca with those of its parental species revealed three founder-events including a common and two rare clones. All other clones appeared to have originated via post-formation microsatellite mutations in the course of evolutionary history of D. armeniaca. CONCLUSION: Our new approach to microsatellite genotyping reveals allele-specific microsatellite and SNP markers for each locus studied. Interspecies comparison of these markers identifies alleles inherited by parthenospecies from parental species, and provides new information on origin and evolution of clonal diversity in D. armeniaca. SNP analyses reveal at least three interspecific origins of D. armeniaca, and microsatellite mutations in these initial clones give rise to new clones. Thus, we first establish multiple origins of D. armeniaca. Our study identifies the most effective molecular markers for elucidating the origins of clonal diversity in other unisexual species that arose via interspecific hybridization.


Subject(s)
Lizards/genetics , Microsatellite Repeats/genetics , Parthenogenesis/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Genetic Variation , Hybridization, Genetic , Mutation
5.
PLoS One ; 12(9): e0185161, 2017.
Article in English | MEDLINE | ID: mdl-28931071

ABSTRACT

The all-female Caucasian rock lizard Darevskia rostombekowi and other unisexual species of this genus reproduce normally via true parthenogenesis. Typically, diploid parthenogenetic reptiles exhibit some amount of clonal diversity. However, allozyme data from D. rostombekowi have suggested that this species consists of a single clone. Herein, we test this hypothesis by evaluating variation at three variable microsatellite loci for 42 specimens of D. rostombekowi from four populations in Armenia. Analyses based on single nucleotide polymorphisms of each locus reveal five genotypes or presumptive clones in this species. All individuals are heterozygous at the loci. The major clone occurs in 24 individuals and involves three populations. Four rare clones involve one or several individuals from one or two populations. Most variation owes to parent-specific single nucleotide polymorphisms, which occur as heterozygotes. This result fails to reject the hypothesis of a single hybridization founder event that resulted in the initial formation of one major clone. The other clones appear to have originated via post-formation microsatellite mutations of the major clone.


Subject(s)
Genetic Variation , Lizards/genetics , Animals , Armenia , Clone Cells , Female , Genotype , Heterozygote , Hybridization, Genetic , Male , Microsatellite Repeats , Mutation , Parthenogenesis/genetics , Polymorphism, Single Nucleotide
6.
PLoS One ; 9(6): e100067, 2014.
Article in English | MEDLINE | ID: mdl-24896777

ABSTRACT

The all-female Caucasian rock lizard species Darevskia dahli and other parthenogenetic species of this genus reproduce normally via true parthenogenesis. Previously, the genetic diversity of this species was analyzed using allozymes, mitochondrial DNA, and DNA fingerprint markers. In the present study, variation at three microsatellite loci was studied in 111 specimens of D. dahli from five populations from Armenia, and new information regarding clonal diversity and clone formation in D. dahli was obtained that suggests a multiple hybridization origin. All individuals but one were heterozygous at the loci studied. Based on specific allele combinations, 11 genotypes were identified among the individuals studied. Individuals with the same genotypes formed distinct clonal lineages: one major clone was represented by 72 individuals, an intermediate clone was represented by 21 individuals, and nine other clones were rare and represented by one or several individuals. A new approach based on the detection and comparison of genotype-specific markers formed by combinations of parental-specific markers was developed and used to identify at least three hybridization founder events that resulted in the initial formation of one major and two rare clones. All other clones, including the intermediate and seven rare clones, probably arose through postformation microsatellite mutations of the major clone. This approach can be used to identify hybridization founder events and to study clone formation in other unisexual taxa.


Subject(s)
Clone Cells , Genetic Variation , Lizards/genetics , Parthenogenesis/genetics , Alleles , Animals , Female , Genotype , Microsatellite Repeats
7.
PLoS One ; 9(3): e91674, 2014.
Article in English | MEDLINE | ID: mdl-24618670

ABSTRACT

The all-female Caucasian rock lizard species Darevskia dahli and other parthenogenetic species of this genus reproduce normally via true parthenogenesis. Previously, the genetic diversity of this species was analyzed using allozymes, mitochondrial DNA, and DNA fingerprint markers. In the present study, variation at three microsatellite loci was studied in 111 specimens of D. dahli from five populations from Armenia, and new information regarding clonal diversity and clone formation in D. dahli was obtained that suggests a multiple hybridization origin. All individuals but one were heterozygous at the loci studied. Based on specific allele combinations, 11 genotypes were identified among the individuals studied. Individuals with the same genotypes formed distinct clonal lineages: one major clone was represented by 72 individuals, an intermediate clone was represented by 21 individuals, and nine other clones were rare and represented by one or several individuals. A new approach based on the detection and comparison of genotype-specific markers formed by combinations of parental-specific markers was developed and used to identify at least three hybridization founder events that resulted in the initial formation of one major and two rare clones. All other clones, including the intermediate and seven rare clones, probably arose through postformation microsatellite mutations of the major clone. This approach can be used to identify hybridization founder events and to study clone formation in other unisexual taxa.


Subject(s)
Lizards , Parthenogenesis , Alleles , Animals , Cluster Analysis , Genetic Heterogeneity , Genetic Loci , Genetic Variation , Genotype , Geography , Lizards/genetics , Microsatellite Repeats , Molecular Sequence Data
8.
Parasitol Res ; 110(2): 833-41, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21796386

ABSTRACT

Avian schistosome Trichobilharzia szidati is a member of the largest genus within the family Schistosomatidae (Trematoda). Population genetic structure of Trichobilharzia spp. schistosomes, causative agents of cercarial dermatitis in humans, has not been studied yet. The knowledge of the genetic structure of trichobilharzian populations is essential for understanding the host-parasite coevolutionary dynamics and epidemiology strategies. Here we examined genetic diversity in three geographically isolated local populations of T. szidati cercariae inhabiting Russia based on nuclear (randomly amplified polymorphic DNA, RAPD) and mt (cox1) markers. We analyzed T. szidati cercariae shed from seven naturally infected snails of Lymnaea stagnalis. Using three random primers, we demonstrated genetic variation among populations, thus posing genetic structure across geographic sites. Moreover, T. szidati cercariae have been genetically structured among hosts (infrapopulations). Molecular variance analysis was performed to test the significance of genetic differentiation within and between local populations. Of total parasitic diversity, 18.8% was partitioned between populations, whereas the higher contribution (48.9%) corresponds to the differences among individual cercariae within infrapopulations. In contrast to RAPD markers, a 1,125-bp fragment of cox1 mt gene failed to provide any significant within-species structure. The lack of geographic structuring was detected using unique haplotypes which were determined in the current work for Moscow and Western Siberian local populations as well as obtained previously for European isolates (Czech Republic and Germany). All T. szidati/Trichobilharzia ocellata haplotypes were found to be mixed across their geographical origin.


Subject(s)
Cercaria/genetics , Cyclooxygenase 1/genetics , Genetic Variation , Mitochondrial Proteins/genetics , Random Amplified Polymorphic DNA Technique , Schistosomatidae/genetics , Animals , Cercaria/classification , Cercaria/isolation & purification , Cluster Analysis , DNA, Helminth/chemistry , DNA, Helminth/genetics , Genotype , Lymnaea/parasitology , Molecular Sequence Data , Molecular Typing , Phylogeny , Russia , Schistosomatidae/classification , Schistosomatidae/isolation & purification , Sequence Analysis, DNA
9.
J Parasitol ; 92(3): 525-30, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16883995

ABSTRACT

Partial sequences of mitochondrial genes nad1 (316 bp) and cox1 (429 bp) were analyzed to estimate the variability of the liver fluke samples collected in 20 localities in Russia, Belarus, Ukraine, Bulgaria, Armenia, Azerbaijan, Georgia, Turkey, Turkmenistan, and China. The sequences had 4.1% (nad1) and 2.3% (cox1) of variable sites, and 13 and 10 haplotypes were identified among nad1 and cox1 genes, respectively. Spatial analysis of genetic and nucleotide diversity indicated little or no structuring of genetic variation between hosts or regions. The analysis of distribution of both separate and combined (nad1 + cox1) haplotypes revealed the existence of 2 well-defined lineages with 2 main haplotypes and a number of shared divergent haplotypes. Our study showed that the first lineage included the main N1-C1 haplotype, which was found in Australia, China, Georgia, Turkey, Armenia, Azerbaijan, and in all European populations (from Russia, Belarus, Ukraine, Bulgaria). The second lineage was found in all European populations and in populations from Armenia and Azerbaijan. It was suggested that one of the lineages (I) has an Asian origin. The possible source of mtDNA variability and associations between lineage divergence of parasite and its definitive hosts (cattle and sheep) are discussed.


Subject(s)
DNA, Mitochondrial/chemistry , Fasciola hepatica/genetics , Genes, Mitochondrial , Genetic Variation , Analysis of Variance , Animals , Cattle , China , Cyclooxygenase 1/genetics , DNA, Mitochondrial/genetics , Deer , Europe, Eastern , Fasciola hepatica/classification , Genes, Mitochondrial/genetics , Haplotypes/genetics , NAD/genetics , Phylogeny , Sequence Alignment , Sheep , Transcaucasia , Turkey , Turkmenistan
SELECTION OF CITATIONS
SEARCH DETAIL
...