Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-454929

ABSTRACT

BackgroundThe 31st of December 2019 was when the World Health Organization received a report about an outbreak of pneumonia of unknown etiology in the Chinese city of Wuhan. The outbreak was the result of the novel virus labeled as SARS-CoV-2, which spread to about 220 countries and caused approximately 3,311,780 deaths, infecting more than 159,319,384 people by May 12th, of 2021. The virus caused a worldwide pandemic leading to panic, quarantines, and lockdowns - although none of its predecessors from the coronavirus family have ever achieved such a scale. The key to understanding the global success of SARS-CoV-2 is hidden in its genome. Materials and MethodsWe retrieved data for 329,942 SARS-CoV-2 records uploaded to the GISAID database from the beginning of the pandemic until the 8th of January 2021. To process the data, a Python variant detection script was developed, using pairwise2 from the BioPython library. Pandas, Matplotlib, and Seaborn, were applied to visualize the data. Genomic coordinates were obtained from the UCSC Genome Browser (https://genome.ucsc.edu/). Sequence alignments were performed for every gene separately. Genomes less than 26,000 nucleotides long were excluded from the research. Clustering was performed using HDBScan. ResultsHere, we addressed the genetic variability of SARS-CoV-2 using 329,942 worldwide samples. The analysis yielded 155 genome variations (SNPs and deletions) in more than 0.3% of the sequences. Nine common SNPs were present in more than 20% of the samples. Clustering results suggested that a proportion of people (2.46%) were infected with a distinct subtype of the B.1.1.7 variant. The subtype may be characterized by four to six additional mutations, with four being a more frequent option (G28881A, G28882A, and G28883[C] in the N gene, A23403G in S, A28095T in ORF8, G25437T in ORF3a). Two clusters were formed by mutations in the samples uploaded predominantly by Denmark and Australia, which may indicate the emergence of "Danish" and "Australian" variants. Five clusters were linked to increased/decreased age, shifted gender ratio, or both. According to a correlation coefficient matrix, 69 mutations correlate with at least one other mutation (correlation coefficient greater than 0.7). We also addressed the completeness of the GISAID database, where between 77% and 93% of the fields were either left blank or filled incorrectly. Metadata mining analysis has led to a hypothesis about gender inequality in medical care in certain countries. Finally, we found ORF6 and E as the most conserved genes (96.15% and 94.66% of the sequences totally match the reference, respectively), making them potential targets for vaccines and treatment. Our results indicate areas of the SARS-CoV-2 genome that researchers can focus on for further structural and functional analysis.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20104901

ABSTRACT

Since its discovery in the Hubei province of China, the global spread of the novel coronavirus SARS-CoV-2 has resulted in millions of COVID-19 cases and hundreds of thousands of deaths. The spread throughout Asia, Europe, and the Americas has presented one of the greatest infectious disease threats in recent history and has tested the capacity of global health infrastructures. Since no effective vaccine is available, isolation techniques to prevent infection such as home quarantine and social distancing while in public have remained the cornerstone of public health interventions. While government and health officials were charged with implementing stay-at-home strategies, many of which had little guidance as to the consequences of how quickly to begin them. Moreover, as the local epidemic curves have been flattened, the same officials must wrestle with when to ease or cease such restrictions as to not impose economic turmoil. To evaluate the effects of quarantine strategies during the initial epidemic, an agent based modeling framework was created to take into account local spread based on geographic and population data with a corresponding interactive desktop and web-based application. Using the state of Massachusetts in the United States of America, we have illustrated the consequences of implementing quarantines at different time points after the initial seeding of the state with COVID-19 cases. Furthermore, we suggest that this application can be adapted to other states, small countries, or regions within a country to provide decision makers with critical information necessary to best protect human health. Author summaryIn this work we presented a local agent-based geographic model for the epidemic spread of COVID-19 with and without quarantine measures. The model is implemented as an interactive Microsoft Windows application, as a web tool online (summaries only), and the source code is freely available at GitHub. In this article, the model is presented for the state of Massachusetts (United States), but can be easily adopted to other administrative districts, areas and territories where the demographics and population characteristics of the reported cases are known. After calibration, the model predicts the morbidity and mortality of the epidemic as it spreads with different quarantine parameters, which lead to reduction of social contact probabilities between individuals. The model outputs for different quarantine start dates and durations are then summarized and compared to actual disease incidence. These summaries demonstrate the effectiveness of the early quarantine measures on the reduction of the number of new infections and deaths. The model framework can also be adopted for use in future decision making process for government and health officials as plans to cease or ease quarantines continue to evolve using the interactive application.

SELECTION OF CITATIONS
SEARCH DETAIL
...