Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 22(19): 7947-51, 2006 Sep 12.
Article in English | MEDLINE | ID: mdl-16952224

ABSTRACT

Molecular nanostructures of the disc-shaped molecule hexapentyloxytriphenylene have been fabricated on length scales ranging from 30 nm to 1.5 mum following self-assembly arising from pi-pi interactions in organic solvents. The size and density of the molecular nanostructures deposited onto glass and indium tin oxide-coated glass substrates were characterized by atomic force microscopy. Dynamic light scattering and spectroscopic evidence of predeposition aggregation in solution are presented, suggesting that the nanostructures are organized in solution and then deposited onto the substrate. Correlations between the relative solvent polarity and the size of molecular nanostructures as well as between the solute concentration in dilute solutions and their density on the substrate are discussed.

2.
J Phys Chem B ; 109(51): 24517-25, 2005 Dec 29.
Article in English | MEDLINE | ID: mdl-16375456

ABSTRACT

Hydrophobic interactions play a major role in binding non-native substrate proteins in the central cavity of the bacterial chaperonin GroEL. The sequence of local conformational changes by which GroEL and its cofactor GroES assist protein folding can be explored using the polarity-sensitive fluorescence probe Nile Red. A specific single-cysteine mutant of GroEL (Cys261), whose cysteine is located inside the central cavity at the apical region of the protein, was covalently labeled with synthetically prepared Nile Red maleimide (NR). Bulk fluorescence spectra of Cys261-NR were measured to examine the effects of binding of the stringent substrate, malate dehydrogenase (MDH), GroES, and nucleotide on the local environment of the probe. After binding denatured substrate, the fluorescence intensity increased by 32 +/- 7%, suggesting enhanced hydrophobicity at the position of the label. On the other hand, in the presence of ATP, the fluorescence intensity decreased by 13 +/- 3%, implying increased local polarity. To explore the sequence of local polarity changes, substrate, GroES, and various nucleotides were added in different orders; the resulting changes in emission intensity provide insight into the sequence of conformational changes occurring during GroEL-mediated protein folding.


Subject(s)
Bacterial Proteins/metabolism , Chaperonin 60/metabolism , Chaperonins/metabolism , Protein Folding , Adenosine Triphosphate/metabolism , Chaperonin 10/genetics , Chaperonin 10/metabolism , Chaperonin 60/genetics , Mutation , Oxazines/chemistry , Protein Binding , Protein Conformation , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL