Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 207: 111245, 2024 May.
Article in English | MEDLINE | ID: mdl-38430827

ABSTRACT

Radioactive scandium-46 microspheres have applications in mapping flow in a chemical reactor through a technique known as radioactive particle tracking (RPT). In the present study a novel microfluidic method has been developed for synthesis of controlled size scandium oxide microspheres. An inline/in-situ mixing of the scandium precursor and gelling agents was implemented which makes the microfluidic platform amenable for truly continuous operation. Microspheres of size varying from 937 to 666 µm were produced by varying O/A ratio from 10 to 30. Perfectly spherical and monodispersed (PDI <10 %) microspheres were obtained at O/A 15 and beyond. The morphology, elemental composition, and structure of the microspheres were analysed by SEM, EDS and XRD, respectively. Subsequently the microspheres were irradiated with thermal neutrons in a nuclear reactor to obtain radioactive Sc-46 oxide microspheres. The activity produced on each Sc-46 microspheres with different sizes was in the range 19.5-34.0 MBq.

2.
Phys Fluids (1994) ; 33(9): 095117, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34588759

ABSTRACT

A three dimensional Computational Fluid Dynamics (CFD) model to study the dispersion of virus laden aerosols in a car moving with its windows open is reported. The aerosols are generated when a possibly infected passenger speaks. A sports utility vehicle having three rows of seats has been considered. As the vehicle moves forward, its interior will exchange air from the surroundings. The CFD model captures the flow patterns generated both outside and inside the vehicle. This internal aerodynamics will in turn dictate how aerosols will spread across the interior and whether or not they will be transported outside the vehicle. A Lagrangian approach is used to determine the transport of the aerosol particles and the effect of particle size on the simulation result has been studied. Four sets of scenarios of practical interest have been considered. The first set shows the effect of vehicle speed on aerosol transport, and the second set describes what happens when some of the windows are closed, while the third set describes how aerosol transport is affected by the location of the passenger speaking. The fourth set describes how a gush of cross wind affects aerosol transport. Simulation results reveal that when all windows are open, aerosols can go out of one window and then return back to the vehicle interior through another window. Results also reveal that when a passenger sitting in the second row speaks, the aerosols generated span across the entire volume of the car interior before going out through the open windows.

3.
Phys Fluids (1994) ; 33(4): 045128, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33953529

ABSTRACT

As ongoing Corona virus disease 2019 pandemic is ravaging the world, more and more people are following social distancing norms, avoiding unnecessary outings and preferring online shopping from the safety of their home over visiting brick and mortar stores and neighborhood shops. Although this has led to a significant reduction in chances of exposure, human-to-human interaction at the doorstep of the customer might be involved during the delivery of the ordered items. This human-to-human doorstep interaction arises in some other situations also. There is a finite probability that the person standing in front of the door coughs or sneezes during such an interaction. In this work, a three dimensional (3D) Euler-Lagrangian computational fluid dynamic model is used to understand the transmission and evaporation of micrometer-size droplets generated due to a coughing event in this setting. Different possible scenarios varying in wind direction, wind velocity, ventilation in the vicinity of door, and extent of door opening have been postulated and simulated. The results obtained from numerical simulations show that in the presence of wind, the dynamics of transmission of droplets is much faster than the dynamics of their evaporation. Thus wind velocity and direction have a significant impact on the fate of the droplets. The simulation results show that even if the door is opened by a very small degree, cough droplets enter through the door. Having open windows in the vicinity of the door on a windy day is expected to reduce the chance of the exposure significantly.

4.
Phys Fluids (1994) ; 33(3): 033311, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33746494

ABSTRACT

As the world learns to live with COVID-19 and activities/business open up, the use of elevators becomes frequent. A pertinent question is what happens if someone accidentally coughs inside the elevator. In this work, a three dimensional Euler-Lagrangian model is used to understand the transmission and evaporation of micrometer-sized droplets in such cases. The effect of turbulence created by the air puff associated with coughing has been considered. Different possible scenarios varying in the presence of air ventilation within the elevator, number of persons coughing, direction of ejection of cough droplets, and ambient relative humidity and temperature have been postulated and simulated. The results obtained show that in the presence of proper ventilation within the elevator, most of the ejected cough droplets fall to the ground before impacting other persons traveling in the same elevator. However, in the absence of proper ventilation, the turbulence created during coughing transmits the particles all across the elevator enclosure.

SELECTION OF CITATIONS
SEARCH DETAIL
...