Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(15): 4401-4411, 2023 08.
Article in English | MEDLINE | ID: mdl-37226287

ABSTRACT

Male reproductive competition can select for condition-dependent, conspicuous traits that signal some aspect of fighting ability and facilitate assessment of potential rivals. However, the underlying mechanisms that link the signal to a male's current condition are difficult to investigate in wild populations, often requiring invasive experimental manipulation. Here, we use digital photographs and chest skin samples to investigate the mechanisms of a visual signal used in male competition in a wild primate, the red chest patch in geladas (Theropithecus gelada). We analysed photographs collected during natural (n = 144) and anaesthetized conditions (n = 38) to understand variability in male and female chest redness, and we used chest skin biopsies (n = 38) to explore sex differences in gene expression. Male and female geladas showed similar average redness, but males exhibited a wider within-individual range in redness under natural conditions. These sex differences were also reflected at the molecular level, with 10.5% of genes exhibiting significant sex differences in expression. Subadult males exhibited intermediate gene expression patterns between adult males and females, pointing to mechanisms underlying the development of the red chest patch. We found that genes more highly expressed in males were associated with blood vessel development and maintenance but not with androgen or oestrogen activity. Together, our results suggest male gelada redness variability is driven by increased blood vessel branching in the chest skin, providing a potential link between male chest redness and current condition as increased blood circulation to exposed skin could lead to heat loss in the cold, high-altitude environment of geladas.


Subject(s)
Theropithecus , Animals , Male , Female , Sex Characteristics , Reproduction , Environment , Skin
2.
Horm Behav ; 146: 105264, 2022 11.
Article in English | MEDLINE | ID: mdl-36155910

ABSTRACT

Androgens offer a window into the timing of important male life history events such as maturation. However, when males are the dispersing sex, piecing together normative androgen profiles across development is challenging because dispersing males are difficult to track. Here, we examined the conditions that may be associated with male androgen status (via fecal androgen metabolites, fAMs) and age at dispersal in wild male geladas (Theropithecus gelada). Gelada male life histories are highly variable - dispersal may occur before sexual maturation, dispersal itself can be immediate or drawn out, and, due to their multi-leveled society, social conditions affecting dispersal can vary for juveniles living in different reproductive units within the same band. Using longitudinal data from known natal males, we examined how androgen levels and age at dispersal were associated with: (1) access to maternal resources (i.e., maternal rank, birth of a younger sibling, experiencing maternal loss), and (2) access to male peers (i.e., number of similar-aged males in their unit). We found that androgens were significantly lower in males with high-ranking mothers (in males >2.5 years of age; infant androgens were unrelated) and that having more male peers in their social group and larger groups overall predicted an earlier age at dispersal. Moreover, dispersal in geladas was not preceded or followed by a surge in androgen levels. Taken together, results suggest that social environments can cause individual variation in androgens and dispersal age. Whether this variation leads to differences in male fitness in later life remains to be determined.


Subject(s)
Theropithecus , Animals , Male , Humans , Aged , Androgens , Reproduction
3.
Nat Ecol Evol ; 6(5): 630-643, 2022 05.
Article in English | MEDLINE | ID: mdl-35332281

ABSTRACT

Primates have adapted to numerous environments and lifestyles but very few species are native to high elevations. Here we investigated high-altitude adaptations in the gelada (Theropithecus gelada), a monkey endemic to the Ethiopian Plateau. We examined genome-wide variation in conjunction with measurements of haematological and morphological traits. Our new gelada reference genome is highly intact and assembled at chromosome-length levels. Unexpectedly, we identified a chromosomal polymorphism in geladas that could potentially contribute to reproductive barriers between populations. Compared with baboons at low altitude, we found that high-altitude geladas exhibit significantly expanded chest circumferences, potentially allowing for greater lung surface area for increased oxygen diffusion. We identified gelada-specific amino acid substitutions in the alpha-chain subunit of adult haemoglobin but found that gelada haemoglobin does not exhibit markedly altered oxygenation properties compared with lowland primates. We also found that geladas at high altitude do not exhibit elevated blood haemoglobin concentrations, in contrast to the normal acclimatization response to hypoxia in lowland primates. The absence of altitude-related polycythaemia suggests that geladas are able to sustain adequate tissue-oxygen delivery despite environmental hypoxia. Finally, we identified numerous genes and genomic regions exhibiting accelerated rates of evolution, as well as gene families exhibiting expansions in the gelada lineage, potentially reflecting altitude-related selection. Our findings lend insight into putative mechanisms of high-altitude adaptation while suggesting promising avenues for functional hypoxia research.


Subject(s)
Theropithecus , Altitude , Animals , Chromosomes , Genomics , Hypoxia , Oxygen , Theropithecus/physiology
4.
Gen Comp Endocrinol ; 293: 113494, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32333913

ABSTRACT

Integrative behavioral ecology requires accurate and non-invasive measures of hormone mediators for the study of wild animal populations. Biologically sensitive assay systems for the measurement of hormones and their metabolites need to be validated for the species and sample medium (e.g. urine, feces, saliva) of interest. Where more than one assay is available for hormone (metabolite) measurement, antibody selection is useful in identifying the assay that tracks changes in an individuals endocrine activity best, i.e., the most biologically sensitive assay. This is particularly important when measuring how glucocorticoids (GCs) respond to the subtle, additive effects of acute stressors during a predictable metabolic challenge, such as gestation. Here, we validate a group-specific enzyme immunoassay, measuring immunoreactive 11ß-hydroxyetiocholanolone, for use in a wild primate, geladas (Theropithecus gelada). This group-specific assay produced values correlated with those from a previously validated double-antibody, corticosterone 125I radioimmunoassay. However, the results with the group-specific assay showed a stronger response to an ACTH challenge and identified greater variation in gelada immunoreactive fecal glucocorticoid metabolites (iGCMs) compared with the corticosterone assay, indicating a higher biological sensitivity for assessing adrenocortical activity. We then used the group-specific assay to: (1) determine the normative pattern of iGCM levels across gelada gestation, and (2) identify the ecological, social, and individual factors that influence GC output for pregnant females. Using a general additive mixed model, we found that higher iGCM levels were associated with low rank (compared to high rank) and first time mothers (compared to multiparous mothers). This study highlights the importance of assay selection and the efficacy of group-specific assays for hormonal research in non-invasively collected samples. Additionally, in geladas, our results identify some of the factors that increase GC output over and above the already-elevated GC concentrations associated with gestation. In the burgeoning field of maternal stress, these factors can be examined to identify the effects that GC elevations may have on offspring development.


Subject(s)
Feces/chemistry , Glucocorticoids/metabolism , Metabolome , Parity , Theropithecus/metabolism , Animals , Animals, Wild/metabolism , Corticosterone/metabolism , Female , Immunoenzyme Techniques , Male , Models, Biological , Pregnancy , Radioimmunoassay , Reproducibility of Results
5.
BMC Evol Biol ; 13: 212, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-24073883

ABSTRACT

BACKGROUND: Interlocus conflict predicts (a) evolution of traits, beneficial to males but detrimental to females and (b) evolution of aging and life-span under the influence of the cost of bearing these traits. However, there are very few empirical investigations shedding light on these predictions. Those that do address these issues, mostly reported response of male reproductive traits or the lack of it and do not address the life-history consequence of such evolution. Here, we test both the above mentioned predictions using experimental evolution on replicate populations of Drosophila melanogaster. We present responses observed after >45 generations of altered levels of interlocus conflict (generated by varying the operational sex ratio). RESULTS: Males from the male biased (high conflict, M-regime) regime evolved higher spontaneous locomotor activity and courtship frequency. Females exposed to these males were found to have higher mortality rate. Males from the female biased regime (low conflict, F-regime) did not evolve altered courtship frequency and activity. However, progeny production of females continuously exposed to F-males was significantly higher than the progeny production of females exposed to M-males indicating that the F-males are relatively benign towards their mates. We found that males from male biased regime lived shorter compared to males from the female biased regime. CONCLUSION: F-males (evolving under lower levels of sexual conflict) evolved decreased mate harming ability indicating the cost of maintenance of the suit of traits that cause mate-harm. The M-males (evolving under higher levels sexual conflict) caused higher female mortality indicating that they had evolved increased mate harming ability, possibly as a by product of increased reproduction related activity. There was a correlated evolution of life-history of the M and F-males. M-regime males lived shorter compared to the males from F-regime, possibly due to the cost of investing more in reproductive traits. In combination, these results suggest that male reproductive traits and life-history traits can evolve in response to the altered levels of interlocus sexual conflict.


Subject(s)
Drosophila melanogaster/physiology , Animals , Biological Evolution , Courtship , Female , Longevity , Male , Phenotype , Reproduction , Sex Ratio
6.
Sci Rep ; 2: 447, 2012.
Article in English | MEDLINE | ID: mdl-22685628

ABSTRACT

When the cost of reproduction for males and variance in female quality are high, males are predicted to show adaptive mate choice. Using Drosophila melanogaster, we test this prediction and show that sperm limited males preferentially mated with young and/or well fed females. The preferred females had higher reproductive output--direct evidence of adaptive precopulatory male mate choice. Our most striking finding is the strong positive correlation between the degree of mating bias showed by the males and the variance in the fitness of the females. We discuss the possible mechanism for such adaptive male mate choice and propose that such choice has important consequences with respect to the existing understanding of the mating system and the evolution of aging.


Subject(s)
Adaptation, Physiological/physiology , Drosophila melanogaster/physiology , Mating Preference, Animal/physiology , Models, Biological , Age Factors , Analysis of Variance , Animals , Biological Evolution , Body Weight/physiology , Competitive Behavior/physiology , Female , Linear Models , Male , Reproduction/physiology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...