Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(4): e25359, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370229

ABSTRACT

This paper focuses on developing a water and energy-saving reliable irrigation system using state-of-the-art computing, communication, and optimal energy management framework. The framework integrates real-time soil moisture and weather forecasting information to decide the time of irrigation and quantity of water required for potato crops, which is made available to the users across a region through the cloud-based irrigation decision support system. This is accomplished through various modules such as data acquisition, soil moisture forecasting, smart irrigation scheduling, and energy management scheme. The main emphasizes is on the electrical segment which demonstrates an energy management scheme for PV-battery based grid-connected system to operate the irrigation system valves and water pump. The proposed scheme is verified through simulation and dSpace-based real-time experiment studies. Overall, the proposed energy management system demonstrates an improvement in the optimal onsite solar power generation and storage capacity to power the solar pump which save the electrical energy as well as the water in order to establish an improved solar-irrigation system. Finally, the proposed system achieved water and energy savings of around 9.24 % for potato crop with full irrigation enhancing the Water-Energy-Food Nexus at field scale.

2.
Data Brief ; 45: 108692, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36425996

ABSTRACT

A standardized experiment for validating Structural Health Monitoring (SHM) methods is taken up. The test structure is a laboratory-scale five-storey steel frame designed with joints that can be easily detached or reattached as needed. The relatively heavier joints mimic the real-life rigid structural joints fabricated with extensive use of gusset plates and fasteners. The frame members are also proportionally chosen to allow sufficient flexibility as in typical real-life structural frames. The material properties, like elasticity and density are experimentally obtained and reported. The real structure has been tested under different levels of forces exerted through an impact hammer. Accordingly, the force and response histories are recorded and reported in this article. Further to complement the requirement of support models for typical model based SHM approaches, two support models are prepared that mimic the test setup. The first one is a high-fidelity Finite Element (FE) model prepared using commercial ABAQUS software and the second one is a simplified FE model prepared with MATLAB scripting language. While the first model emphasizes the details to be replicated with sufficient accuracy through the numerical model, the simplified model aims to reduce the computational burden that is typically induced through recursive simulation calls of such support models. Both the models are calibrated (/updated) using typical optimization protocols minimizing the departure between model and real experimental responses. Both time and frequency domain information has been used in this attempt. All details and data produced by the models and the experiments are disseminated in this article.

SELECTION OF CITATIONS
SEARCH DETAIL
...