Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
iScience ; 27(4): 109388, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38510116

ABSTRACT

Existing medical treatments for endometriosis-related pain are often ineffective, underscoring the need for new therapeutic strategies. In this study, we applied a computational drug repurposing pipeline to stratified and unstratified disease signatures based on endometrial gene expression data to identify potential therapeutics from existing drugs, based on expression reversal. Of 3,131 unique genes differentially expressed by at least one of six endometriosis signatures, only 308 (9.8%) were in common; however, 221 out of 299 drugs identified, (73.9%) were shared. We selected fenoprofen, an uncommonly prescribed NSAID that was the top therapeutic candidate for further investigation. When testing fenoprofen in an established rat model of endometriosis, fenoprofen successfully alleviated endometriosis-associated vaginal hyperalgesia, a surrogate marker for endometriosis-related pain. These findings validate fenoprofen as a therapeutic that could be utilized more frequently for endometriosis and suggest the utility of the aforementioned computational drug repurposing approach for endometriosis.

2.
Commun Biol ; 6(1): 780, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37587191

ABSTRACT

Endometriosis is a leading cause of pain and infertility affecting millions of women globally. Herein, we characterize variation in DNA methylation (DNAm) and its association with menstrual cycle phase, endometriosis, and genetic variants through analysis of genotype data and methylation in endometrial samples from 984 deeply-phenotyped participants. We estimate that 15.4% of the variation in endometriosis is captured by DNAm and identify significant differences in DNAm profiles associated with stage III/IV endometriosis, endometriosis sub-phenotypes and menstrual cycle phase, including opening of the window for embryo implantation. Menstrual cycle phase was a major source of DNAm variation suggesting cellular and hormonally-driven changes across the cycle can regulate genes and pathways responsible for endometrial physiology and function. DNAm quantitative trait locus (mQTL) analysis identified 118,185 independent cis-mQTLs including 51 associated with risk of endometriosis, highlighting candidate genes contributing to disease risk. Our work provides functional evidence for epigenetic targets contributing to endometriosis risk and pathogenesis. Data generated serve as a valuable resource for understanding tissue-specific effects of methylation on endometrial biology in health and disease.


Subject(s)
Endometriosis , Female , Humans , Endometriosis/genetics , DNA Methylation , Pain , Embryo Implantation
3.
Reprod Biomed Online ; 45(3): 519-530, 2022 09.
Article in English | MEDLINE | ID: mdl-35773139

ABSTRACT

RESEARCH QUESTION: Adenomyosis is a common uterine disorder of uncertain causes. Can transcriptomic analyses of the endometrium and myometrium reveal potential mechanisms underlying adenomyosis pathogenesis? DESIGN: Transcriptomic profiles of eutopic endometrium and myometrium from women with and without diffuse adenomyosis and with symptomatic FIGO type 2-5 fibroids in the proliferative phase of the menstrual cycle were assessed using RNA sequencing and bioinformatic analysis. Differentially expressed genes (DEG) and potential pathways were validated by quantitative reverse transcription polymerase chain reaction, immunoblotting and Masson staining, using additional clinical samples. RESULTS: Top biological processes in the endometrium of women with versus without adenomyosis, enriched from DEG, comprised inflammation, extracellular matrix (ECM) organization, collagen degradation and hyaluronan synthesis, which are key in cell migration and cell movement. Top biological processes enriched from DEG in the myometrium of women with versus without adenomyosis revealed ECM organization dysfunction, abnormal sensory pain perception and gamma aminobutyric acid (GABA) synaptic transmission. Dysregulation of prolactin signalling was also enriched in eutopic endometrium and in the myometrium of women with adenomyosis. CONCLUSIONS: Overall, our results support the invasive endometrium theory in the pathogenesis of adenomyosis, in which inflammation induces ECM remodelling resulting in a track for subsequent endometrial collective cell migration and onset of adenomyosis. Moreover, abnormal myometrial GABA synaptic transmission may contribute to dysmenorrhoea in women with adenomyosis and is a possible target for novel therapeutic development. Prolactin signalling abnormalities may serve as another opportunity for therapeutic intervention.


Subject(s)
Adenomyosis , Endometriosis , Adenomyosis/pathology , Cell Movement , Endometriosis/pathology , Endometrium/metabolism , Female , Humans , Inflammation/metabolism , Prolactin/metabolism , Transcriptome , gamma-Aminobutyric Acid/genetics , gamma-Aminobutyric Acid/metabolism
4.
Stem Cell Rev Rep ; 18(7): 2328-2350, 2022 10.
Article in English | MEDLINE | ID: mdl-35461466

ABSTRACT

Frequent exposure to mechanistic damages, pathological ingression, and chronic inflammation leads to recurrent cell death in the gut epithelium. Intestinal stem cells (ISCs) that reside in crypt-specific niches have an unprecedented role in gut epithelium renewal. ISC also facilitates the formation of mature intestinal epithelial cells (IECs) through regular differentiation and renewal in short turnover cycles. Interestingly, oxidative stress (OS) prevalent in the gut has a dominant role in the regulation of ISC proliferation and development. However, it is unclear, which axis OS controls the cellular signaling and underlying molecular mechanism to drive ISC turnover and regeneration cycle. Therefore, this review provides a comprehensive overview of the present understanding of OS generation in the gut, relatively directing the ISC development and regeneration under a conditional cellular environment. Additionally, the focus has been drawn on intestinal nutritional state and its related alteration on OS and its effect on ISCs. Moreover, recent findings and new approaches are emphasized herewith to enhance the present understanding of the mechanisms that direct universal ISC characteristics. Intestinal stem cells (ISC) form the basis of all repair mechanisms that help in the proliferation of the gut through their constant renewal and replacement. This activity is closely regulated in the ISC niche and is modulated by several extrinsic as well as intrinsic factors. Reactive Oxygen Species (ROS) form one of the major factors that influence ISC formation. The levels of ROS in the gut influence stem cell renewal ROS itself however is further influenced by several other factors such as the microbiota concerning the gut and immune cells which in turn also influence one another by various cross-talk mechanisms. Diet also forms an important part of this crosstalk. It also regulates the levels of ROS in the gut and helps in the proliferation of the ISC cells and their overall turnover rate.


Subject(s)
Intestinal Mucosa , Intestines , Cell Differentiation , Intestinal Mucosa/metabolism , Intestines/physiology , Reactive Oxygen Species/metabolism , Stem Cells
5.
BMC Med ; 20(1): 158, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35421980

ABSTRACT

BACKGROUND: Endometriosis is a chronic, estrogen-dependent disorder where inflammation contributes to disease-associated symptoms of pelvic pain and infertility. Immune dysfunction includes insufficient immune lesion clearance, a pro-inflammatory endometrial environment, and systemic inflammation. Comprehensive understanding of endometriosis immune pathophysiology in different hormonal milieu and disease severity has been hampered by limited direct characterization of immune populations in endometrium, blood, and lesions. Simultaneous deep phenotyping at single-cell resolution of complex tissues has transformed our understanding of the immune system and its role in many diseases. Herein, we report mass cytometry and high dimensional analyses to study immune cell phenotypes, abundance, activation states, and functions in endometrium and blood of women with and without endometriosis in different cycle phases and disease stages. METHODS: A case-control study was designed. Endometrial biopsies and blood (n = 60 total) were obtained from women with (n = 20, n = 17, respectively) and without (n = 14, n = 9) endometriosis in the proliferative and secretory cycle phases of the menstrual cycle. Two mass cytometry panels were designed: one broad panel and one specific for mononuclear phagocytic cells (MPC), and all samples were multiplexed to characterize both endometrium and blood immune composition at unprecedented resolution. We combined supervised and unsupervised analyses to finely define the immune cell subsets with an emphasis on MPC. Then, association between cell types, protein expression, disease status, and cycle phase were performed. RESULTS: The broad panel highlighted a significant modification of MPC in endometriosis; thus, they were studied in detail with an MPC-focused panel. Endometrial CD91+ macrophages overexpressed SIRPα (phagocytosis inhibitor) and CD64 (associated with inflammation) in endometriosis, and they were more abundant in mild versus severe disease. In blood, classical and intermediate monocytes were less abundant in endometriosis, whereas plasmacytoid dendritic cells and non-classical monocytes were more abundant. Non-classical monocytes were higher in severe versus mild disease. CONCLUSIONS: A greater inflammatory phenotype and decreased phagocytic capacity of endometrial macrophages in endometriosis are consistent with defective clearance of endometrial cells shed during menses and in tissue homeostasis, with implications in endometriosis pathogenesis and pathophysiology. Different proportions of monocytes and plasmacytoid dendritic cells in blood from endometriosis suggest systemically aberrant functionality of the myeloid system opening new venues for the study of biomarkers and therapies for endometriosis.


Subject(s)
Endometriosis , Case-Control Studies , Endometriosis/metabolism , Endometrium/metabolism , Endometrium/pathology , Female , Humans , Immunophenotyping , Inflammation/metabolism
6.
Front Immunol ; 12: 788315, 2021.
Article in English | MEDLINE | ID: mdl-35069565

ABSTRACT

The uterine lining (endometrium) exhibits a pro-inflammatory phenotype in women with endometriosis, resulting in pain, infertility, and poor pregnancy outcomes. The full complement of cell types contributing to this phenotype has yet to be identified, as most studies have focused on bulk tissue or select cell populations. Herein, through integrating whole-tissue deconvolution and single-cell RNAseq, we comprehensively characterized immune and nonimmune cell types in the endometrium of women with or without disease and their dynamic changes across the menstrual cycle. We designed metrics to evaluate specificity of deconvolution signatures that resulted in single-cell identification of 13 novel signatures for immune cell subtypes in healthy endometrium. Guided by statistical metrics, we identified contributions of endometrial epithelial, endothelial, plasmacytoid dendritic cells, classical dendritic cells, monocytes, macrophages, and granulocytes to the endometrial pro-inflammatory phenotype, underscoring roles for nonimmune as well as immune cells to the dysfunctionality of this tissue.


Subject(s)
Endometriosis , Endometrium , RNA-Seq , Single-Cell Analysis , Endometriosis/genetics , Endometriosis/immunology , Endometriosis/pathology , Endometrium/immunology , Endometrium/pathology , Female , Humans
7.
Front Genet ; 11: 716, 2020.
Article in English | MEDLINE | ID: mdl-32719721

ABSTRACT

Adenomyosis is a prevalent, estrogen-dependent uterine disorder wherein endometrial cells are abnormally present in the myometrium and are surrounded by hyperplastic/hypertrophic smooth muscle. Its etiology is unclear, although endometrial cell invasion into the myometrium has been postulated. RNA methylation, particularly N6-methyladenosine (m6A), plays an important role in regulating various physiological processes and invasive disorders. The goal of this in silico and lab-based experimental study was to explore a possible role for m6A in adenomyosis. Gene expression profiles of both the endometrium and myometrium of women with adenomyosis (cases) and without disease (controls) were obtained from the publicly available Gene Expression Omnibus (GEO) database. In the endometrium, STRING database analysis revealed that METTL3 functions as a "hub" gene of m6A RNA methylation regulators, and the genes involved in m6A regulation, including METTL3, FTO, ZC3H13, and YTHDC1 expression, were significantly decreased in cases versus controls. Functional, co-expression, and correlational analyses of endometrium from cases versus controls revealed decreased total m6A levels, induced by METTL3, and the downstream elevated insulin-like growth factor-1(IGF1) and D-Dopachrome Tautomerase (DDT), with the latter two having known functions in epithelial proliferation and cell migration, which are important processes in the pathogenesis of adenomyosis in endometrium. m6A RNA methylation regulators, including RBM15/15B, ALKBH5, FTO, YTHDF1/2, KIAA1429, HNRNPC, METTL3, ZC3H13, and YTHDC2, were also differentially expressed in the myometrium from cases versus controls. We validated decreased total m6A levels and differential expression of m6A RNA methylation regulators in the myometrium of patients with adenomyosis using qRT-PCR, immunohistochemistry and tissues available from our biorepository. Possible target genes, including cadherin 3(CDH3), sodium channelß-subunit 4 (SCN4B), and placenta-specific protein 8 (PLAC8), which are involved in cell adhesion, muscle contraction and immune response in the myometrium of adenomyosis patients were also validated. Thus, through extensive public database mining and validation of select genes, this study, for the first time, implicates m6A and its methylation regulators in the pathogenesis of adenomyosis. Follow on functional studies are anticipated to elucidate mechanisms involving m6A and its regulators and down-stream effectors in the pathogenesis of this enigmatic reproductive disorder and potentially identify druggable targets to control its associated symptoms.

8.
Chem Res Toxicol ; 25(10): 2117-26, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22768918

ABSTRACT

Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9,10-epoxide pathway (P450/epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. On the basis of B[a]P-1,6 and 3,6-dione formation, approximately 4 µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7-8-dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones.


Subject(s)
Benzo(a)pyrene/toxicity , Mutagenesis , Mutagens/toxicity , Tumor Suppressor Protein p53/genetics , Benzo(a)pyrene/metabolism , Cations/metabolism , Cations/toxicity , DNA Damage/drug effects , Humans , Mutagens/metabolism , NADP/metabolism , Oxidation-Reduction , Quinones/metabolism , Quinones/toxicity , Yeasts/genetics
9.
Chem Res Toxicol ; 25(1): 113-21, 2012 Jan 13.
Article in English | MEDLINE | ID: mdl-22053912

ABSTRACT

Tobacco smoke exposure stimulates the expression of genes that are likely to be involved in the metabolism of its combustion products such as polycyclic aromatic hydrocarbons (PAH). Four of the smoke induced genes are aldo-keto reductases (AKR), enzymes that metabolically activate PAH to PAH o-quinones. Alternatively, PAHs are metabolized to (±)-anti-diol epoxides, such as (±)-anti-benzo[a]pyrene diol epoxide ((±)-anti-BPDE)), by the combined action of P4501A1/1B1 and epoxide hydrolase. (±)-anti-BPDE forms DNA adducts directly, while PAH o-quinones cause DNA damage by oxidative stress through a futile redox cycle. To address the role of AKRs in PAH cytotoxicity, we compared the cytotoxicity of PAH metabolites and the effects of overexpressing AKR1A1 in lung cells. (±)-anti-BPDE and B[a]P-7,8-trans-dihydrodiol, an intermediate in (±)-anti-BPDE metabolism, are toxic to A549 cells at concentrations with an IC(50) of ∼2 µM. In contrast, the PAH o-quinone B[a]P-7,8-dione was about 10-fold less toxic to A549 cells with an IC(50) > 20 µM. Similar differences in cytoxicity were observed with two other PAH o-quinones (benz[a]anthracene-3,4-dione and 7,12-dimethylbenz[a]anthracene-3,4-dione) compared with their respective diol-epoxide counterparts (BA-3,4-diol-1,2-epoxide and DMBA-3,4-diol-1,2-epoxide). In addition, both anti-BPDE and B[a]P-7,8-trans-dihydrodiol induced p53 expression ∼6 h post-treatment at concentrations as low as 1 µM consistent with extensive DNA damage. B[a]P-7,8-dione treatment did not induce p53 but generated reactive oxygen species (ROS) in A549 cells and induced the expression of oxidative response genes in H358 cells. We also observed that overexpression of AKR1A1 in H358 cells, which otherwise have low levels of AKR expression, protected cells 2-10-fold from the toxic effects of B[a]P-7,8-trans-dihydrodiol. These data suggest that overexpression of AKRs may protect lung cancer cells from the acute toxic effects of PAH.


Subject(s)
Adenocarcinoma/metabolism , Alcohol Oxidoreductases/metabolism , Dihydroxydihydrobenzopyrenes/toxicity , Epithelial Cells/metabolism , Lung Neoplasms/metabolism , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Adenocarcinoma of Lung , Aldehyde Reductase , Aldo-Keto Reductases , Benzo(a)pyrene/toxicity , Cell Line, Tumor , Epithelial Cells/drug effects , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Humans , Quinones/toxicity , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction
10.
J Org Chem ; 74(7): 2884-6, 2009 Apr 03.
Article in English | MEDLINE | ID: mdl-19260696

ABSTRACT

A two-step procedure for preparing 2-alkyl-1,3-butadienes is described. Cuprate addition to commercially available 1,4-dibromo-2-butene yields 3-alkyl-4-bromo-1-butene, a product of S(N)2' substitution. Dehydrohalogenation gives 2-alkyl-1,3-butadienes.


Subject(s)
Butadienes/chemical synthesis , Butadienes/chemistry , Halogenation , Molecular Structure
11.
Org Lett ; 9(24): 4963-5, 2007 Nov 22.
Article in English | MEDLINE | ID: mdl-17967032

ABSTRACT

Dihydrosiloles are easily prepared from 1,3-dienes and dichlorosilanes, even on kilogram scale. Asymmetric hydroboration of a 3-alkyl-1,5-dihydrosilole, prepared from a 2-alkyl-1,3-diene, followed by treatment with aqueous HF results in Peterson fragmentation, forming optically active 3-alkyl-4-fluorosilyl-1-butenes. The fluorosilanes are stable to moisture but very reactive toward nucleophiles. In addition, they can be converted to nucleophilic silyllithium reagents.


Subject(s)
Silanes/chemistry , Alkadienes/chemistry , Molecular Structure , Silanes/chemical synthesis , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...