Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Lett ; 295: 99-114, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29908848

ABSTRACT

Tributyltin chloride (TBT) is an obesogen associated with various metabolic and reproductive dysfunctions after in utero exposure. However, few studies have evaluated TBT's obesogenic effect on adult ovaries. In this study, we assessed whether TBT's obesogenic effects resulted in adult ovarian adipogenesis and other reproductive abnormalities. TBT was administered to adult female Wistar rats, and their reproductive tract morphophysiology was assessed. We further assessed the ovarian mRNA/protein expression of genes that regulate adipogenesis. Rats exposed to TBT displayed abnormal estrous cyclicity, ovarian sex hormone levels, ovarian follicular development and ovarian steroidogenic enzyme regulation. Rats exposed to TBT also demonstrated abnormal ovarian adipogenesis with increased cholesterol levels, lipid accumulation, and PPARγ, C/EBP-ß and Lipin-1 expression. A negative correlation between the ovarian PPARγ expression and aromatase expression was observed in the TBT rats. Furthermore, TBT exposure resulted in reproductive tract atrophy, inflammation, oxidative stress and fibrosis. Ovarian dysfunctions also co-occurred with the uterine irregularities. Abnormal ovarian adipogenic markers occurring after TBT exposure may be associated with uterine irregularities. A positive correlation between the ovarian cholesterol levels and uterine inflammation was observed in the TBT rats. These findings suggest that TBT leads to ovarian obesogenic effects directly by abnormal adipogenesis and/or indirectly through adult reproductive tract irregularities.


Subject(s)
Adipogenesis/drug effects , Adipose Tissue/drug effects , Adiposity/drug effects , Environmental Pollutants/toxicity , Obesity/chemically induced , Ovary/drug effects , Trialkyltin Compounds/toxicity , Adipogenesis/genetics , Adipose Tissue/metabolism , Adipose Tissue/pathology , Adipose Tissue/physiopathology , Adiposity/genetics , Animals , Atrophy , Cholesterol/metabolism , Cholesterol Side-Chain Cleavage Enzyme/genetics , Cholesterol Side-Chain Cleavage Enzyme/metabolism , Estrous Cycle/blood , Estrous Cycle/drug effects , Female , Fibrosis , Gene Expression Regulation, Enzymologic , Gonadal Steroid Hormones/blood , Lipid Droplets/drug effects , Lipid Droplets/metabolism , Obesity/metabolism , Obesity/pathology , Obesity/physiopathology , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Ovarian Follicle/pathology , Ovary/metabolism , Ovary/pathology , Ovary/physiopathology , Oxidative Stress/drug effects , Pelvic Inflammatory Disease/chemically induced , Pelvic Inflammatory Disease/metabolism , Pelvic Inflammatory Disease/pathology , Pelvic Inflammatory Disease/physiopathology , Phosphoproteins/genetics , Phosphoproteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar
2.
Toxicol Appl Pharmacol ; 319: 22-38, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28161095

ABSTRACT

Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100ng/kg/day) for 15days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be associated with abnormal HPG function. A strong negative correlation between the hyperleptinemia and lower Kiss responsiveness was observed in the TBT rats. These findings provide evidence that TBT leads to toxic effects direct on the HPG axis and/or indirectly by abnormal metabolic regulation of the HPG axis.


Subject(s)
Hypothalamic Hormones/metabolism , Hypothalamo-Hypophyseal System/metabolism , Kisspeptins/metabolism , Leptin/metabolism , Pituitary-Adrenal System/metabolism , Trialkyltin Compounds/toxicity , Animals , Endocrine Disruptors/toxicity , Environmental Exposure/adverse effects , Estrous Cycle/drug effects , Estrous Cycle/metabolism , Female , Hypothalamic Hormones/antagonists & inhibitors , Hypothalamo-Hypophyseal System/drug effects , Kisspeptins/antagonists & inhibitors , Leptin/antagonists & inhibitors , Obesity/chemically induced , Obesity/metabolism , Pituitary-Adrenal System/drug effects , Rats , Rats, Wistar , Reproduction/drug effects , Reproduction/physiology , Signal Transduction/drug effects , Signal Transduction/physiology
3.
Hypertens Res ; 39(11): 769-776, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27383506

ABSTRACT

Renovascular hypertension is characterized by increased angiotensin II and oxidative stress, and by endothelial dysfunction. The purpose of this study was to test whether the administration of aliskiren (ALSK) and l-arginine (l-ARG) would restore impaired baroreflex sensitivity and reduce oxidative stress in a rat renovascular hypertension model. Hypertension was induced by clipping the left renal artery, and the following five groups were created: SHAM; two-kidney, 1-clip (2K1C); 2K1C plus ALSK (ALSK); 2K1C plus l-ARG (l-ARG); and 2K1C plus ALSK+l-ARG (ALSK+l-ARG). After 21 days of treatment, only the ALSK+l-ARG group was effective in normalizing the arterial pressure (108.8±2.8 mm Hg). The l-ARG and ALSK+l-ARG groups did not show hypertrophy of the left ventricle. All the treatments restored the depressed baroreflex sensitivity to values found in the SHAM group. Acute administration of TEMPOL restored the depressed baroreflex sensitivity in the 2K1C group to values that resembled those presented by the other groups. All treatments were effective for an increase in the antioxidant pathway and reduction in the oxidative pathway. In conclusion, the treatment with ALSK or l-ARG reduced oxidative stress and restored reduced baroreflex sensitivity in renovascular hypertension. In addition, the treatments were able to normalize blood pressure and reverse left ventricular hypertrophy when used in combination.


Subject(s)
Amides/pharmacology , Arginine/pharmacology , Baroreflex/drug effects , Fumarates/pharmacology , Hypertension, Renovascular/physiopathology , Oxidative Stress/drug effects , Sympathetic Nervous System/drug effects , Animals , Blood Pressure/drug effects , Catalase/metabolism , Heart Rate/drug effects , Hypertension, Renovascular/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/physiopathology , Male , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Sympathetic Nervous System/metabolism , Sympathetic Nervous System/physiopathology
4.
Endocrinology ; 157(8): 2978-95, 2016 08.
Article in English | MEDLINE | ID: mdl-27267847

ABSTRACT

Tributyltin chloride (TBT) is an environmental contaminant that is used as a biocide in antifouling paints. TBT has been shown to induce endocrine-disrupting effects. However, studies evaluating the effects of TBT on the hypothalamus-pituitary-adrenal (HPA) axis are especially rare. The current study demonstrates that exposure to TBT is critically responsible for the improper function of the mammalian HPA axis as well as the development of abnormal morphophysiology in the pituitary and adrenal glands. Female rats were treated with TBT, and their HPA axis morphophysiology was assessed. High CRH and low ACTH expression and high plasma corticosterone levels were detected in TBT rats. In addition, TBT leads to an increased in the inducible nitric oxide synthase protein expression in the hypothalamus of TBT rats. Morphophysiological abnormalities, including increases in inflammation, a disrupted cellular redox balance, apoptosis, and collagen deposition in the pituitary and adrenal glands, were observed in TBT rats. Increases in adiposity and peroxisome proliferator-activated receptor-γ protein expression in the adrenal gland were observed in TBT rats. Together, these data provide in vivo evidence that TBT leads to functional dissociation between CRH, ACTH, and costicosterone, which could be associated an inflammation and increased of inducible nitric oxide synthase expression in hypothalamus. Thus, TBT exerts toxic effects at different levels on the HPA axis function.


Subject(s)
Environmental Pollutants/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Trialkyltin Compounds/pharmacology , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Adrenal Glands/pathology , Animals , Endocrine Disruptors/pharmacology , Female , Hypothalamo-Hypophyseal System/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Hypothalamus/pathology , Inflammation/chemically induced , Inflammation/pathology , Organ Size/drug effects , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Pituitary Gland/pathology , Pituitary-Adrenal System/metabolism , Rats , Rats, Wistar
5.
Reprod Toxicol ; 57: 29-42, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26050607

ABSTRACT

Organotins (OTs) are environmental contaminants used as biocides in antifouling paints that have been shown to be endocrine disrupters. However, studies evaluating the effects of OTs accumulated in seafood (LNI) on reproductive health are particularly sparse. This study demonstrates that LNI leads to impairment in the reproductive tract of female rats, as the estrous cycle development, as well as for ovary and uterus morphology. Rats were treated with LNI, and their reproductive morphophysiology was assessed. Morphophysiological abnormalities, such as irregular estrous cycles, abnormal ovarian follicular development and ovarian collagen deposition, were observed in LNI rats. An increase in luminal epithelia and ERα expression was observed in the LNI uteri. Together, these data provide in vivo evidence that LNI are toxic for reproductive morphophysiology, which may be associated with risks to reproductive function.


Subject(s)
Endocrine Disruptors/toxicity , Organotin Compounds/toxicity , Ovary/drug effects , Seafood/adverse effects , Uterus/drug effects , Water Pollutants, Chemical/toxicity , Animals , Collagen/metabolism , Endocrine Disruptors/blood , Endocrine Disruptors/pharmacokinetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Estrous Cycle/drug effects , Female , Food Contamination , Gastropoda , Organotin Compounds/blood , Organotin Compounds/pharmacokinetics , Ovary/metabolism , Ovary/pathology , Rats, Wistar , Uterus/metabolism , Uterus/pathology , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/pharmacokinetics
6.
Toxicol Lett ; 225(3): 378-85, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24468273

ABSTRACT

Organotin compounds such as tributyltin (TBT) are used as antifouling paints by shipping companies. TBT inhibits the aromatase responsible for the transformation of testosterone into estrogen. Our hypothesis is that TBT modulates the vascular reactivity of female rats. Female Wistar rats were treated daily (Control; CONT) or TBT (100 ng/kg) for 15 days. Rings from thoracic aortas were incubated with phenylephrine (PHE, 10(-10)-10(-4) M) in the presence and absence of endothelium, and in the presence of N(G)-Nitro-L-Arginine Methyl Ester (L-NAME), tetraethylammonium (TEA) and apocynin. TBT decreased plasma levels of estrogen and the vascular response to PHE. In the TBT group, the vascular reactivity was increased in the absence of endothelium, L-NAME and TEA. The decrease in PHE reactivity during incubation with apocynin was more evident in the TBT group. The sensitivity to acetylcholine (ACh) and sodium nitroprusside (SNP) was reduced in the TBT group. TBT increased collagen, reduced α1-smooth muscle actin. Female rats treated with TBT for 15 days showed morphology alteration of the aorta and decreased their vascular reactivity, probably due to mechanisms dependent on nitric oxide (NO) bioavailability, K(+) channels and an increase in oxidative stress.


Subject(s)
Aorta, Thoracic/drug effects , Endothelium, Vascular/drug effects , Phenylephrine/pharmacology , Trialkyltin Compounds/toxicity , Acetophenones/pharmacology , Acetylcholine/pharmacology , Animals , Aorta, Thoracic/physiology , Aorta, Thoracic/ultrastructure , Drug Interactions , Endothelium, Vascular/physiology , Endothelium, Vascular/ultrastructure , Estradiol/metabolism , Female , Histocytochemistry , Immunoblotting , Linear Models , NG-Nitroarginine Methyl Ester/pharmacology , Nitroprusside/pharmacology , Rats , Rats, Wistar , Tetraethylammonium/pharmacology , Vasoconstriction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...