Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 15(3): 1806-1826, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30657687

ABSTRACT

The effect of different treatments of the nonbonded interactions in simulations employing the recently introduced GROMOS-compatible 2016H66 force field is evaluated based on calculations carried out with the GROMACS software. This is done considering four thermodynamic and transport properties (pure liquid density, vaporization enthalpy, surface-tension coefficient, and self-diffusion constant) of 58 organic liquids representative of the chemical groups alcohol, ether, aldehyde, ketone, carboxylic acid, ester, amine, amide, thiol, sulfide, disulfide, and aromatic compounds, also including water (SPC model). A dipalmitoylphosphatidylcholine bilayer system is considered as well. The simulated properties are found to be very sensitive to the treatment of the long-range dispersion interactions, notably for the least polar systems. In general, the treatment of the long-range electrostatic or Lennard-Jones interactions using homogeneous correction terms or lattice-sum approaches yield similar results, with punctual discrepancies. The combination of a lattice-sum approach for the electrostatic interactions with a straight-cutoff truncation of the Lennard-Jones interactions at a distance of at least 1.2 nm is found to represent a good compromise setup within GROMACS for achieving compatibility with the reference results obtained using GROMOS as well as a comparable level of agreement with the experimental data. This study also reveals two potential issues with the GROMACS software, related to an incorrect calculation of the pressure when using LINCS in version 4.0.7 and an inadequate implementation of the twin-range scheme in version 5.1.2.

2.
ACS Omega ; 3(1): 1014-1021, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-31457945

ABSTRACT

Most therapeutic targets are proteins whose binding sites are hydrophobic cavities. For this reason, the majority of drugs under development are hydrophobic molecules exhibiting low solubility in water. To tackle this issue, a few percent of cosolvent, such as dimethyl sulfoxide (DMSO), is usually employed to increase drug solubility during the drug screening process. However, the few published studies dealing with the effect of adding DMSO showed that the affinity of hydrophobic ligands is systematically underestimated. To better understand the effect of DMSO, there is a need of studying its effect on a large range of systems. In this work, we used ß- and γ-cyclodextrins (made of 6 and 7 α-d-glucopyranoside units, respectively) as models of hydrophobic cavities to investigate the effect of the addition 5% DMSO on the affinity of 1-adamantane carboxylic acid (ADA) to these cyclodextrins. The two systems differ by the size of the cyclodextrin cavity. The evaluation of binding constants was performed using ultrasound velocimetry, nuclear magnetic resonance spectroscopy, and molecular simulations. All techniques show that the presence of 5% DMSO does not significantly modify the affinity of ADA for γ-cyclodextrin, while the affinity is dramatically reduced for ß-cyclodextrin. The bias induced by the presence of DMSO is thus more important when the ligand volume better fits the cyclodextrin cavity. Our work also suggests that free energy calculations provide a sound alternative to experimental techniques when dealing with poorly water-soluble drugs.

3.
Langmuir ; 33(39): 10225-10238, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28832154

ABSTRACT

Polyoxyethylene glycol alkyl ether amphiphiles (CiEj) are important nonionic surfactants, often used for biophysical and membrane protein studies. In this work, we extensively test the GROMOS-compatible 2016H66 force field in molecular dynamics simulations involving the lamellar phase of a series of CiEj surfactants, namely C12E2, C12E3, C12E4, C12E5, and C14E4. The simulations reproduce qualitatively well the monitored structural properties and their experimental trends along the surfactant series, although some discrepancies remain, in particular in terms of the area per surfactant, the equilibrium phase of C12E5, and the order parameters of C12E3, C12E4, and C12E5. The polar head of the CiEj surfactants is highly hydrated, almost like a single polyethyleneoxide (PEO) molecule at full hydration, resulting in very compact conformations. Within the bilayer, all CiEj surfactants flip-flop spontaneously within tens of nanoseconds. Water-permeation is facilitated, and the bending rigidity is 4 to 5 times lower than that of typical phospholipid bilayers. In line with another recent theoretical study, the simulations show that the lamellar phase of CiEj contains large hydrophilic pores. These pores should be abundant in order to reproduce the comparatively low NMR order parameters. We show that their contour length is directly correlated to the order parameters, and we estimate that they should occupy approximately 7-10% of the total membrane area. Due to their highly dynamic nature (rapid flip-flops, high water permeability, observed pore formation), CiEj surfactant bilayers are found to represent surprisingly challenging systems in terms of modeling. Given this difficulty, the results presented here show that the 2016H66 parameters, optimized independently considering pure-liquid as well as polar and nonpolar solvation properties of small organic molecules, represent a good starting point for simulating these systems.

4.
PLoS One ; 12(8): e0182972, 2017.
Article in English | MEDLINE | ID: mdl-28817602

ABSTRACT

Protein flexibility is often implied in binding with different partners and is essential for protein function. The growing number of macromolecular structures in the Protein Data Bank entries and their redundancy has become a major source of structural knowledge of the protein universe. The analysis of structural variability through available redundant structures of a target, called multiple target conformations (MTC), obtained using experimental or modeling methods and under different biological conditions or different sources is one way to explore protein flexibility. This analysis is essential to improve the understanding of various mechanisms associated with protein target function and flexibility. In this study, we explored structural variability of three biological targets by analyzing different MTC sets associated with these targets. To facilitate the study of these MTC sets, we have developed an efficient tool, SA-conf, dedicated to capturing and linking the amino acid and local structure variability and analyzing the target structural variability space. The advantage of SA-conf is that it could be applied to divers sets composed of MTCs available in the PDB obtained using NMR and crystallography or homology models. This tool could also be applied to analyze MTC sets obtained by dynamics approaches. Our results showed that SA-conf tool is effective to quantify the structural variability of a MTC set and to localize the structural variable positions and regions of the target. By selecting adapted MTC subsets and comparing their variability detected by SA-conf, we highlighted different sources of target flexibility such as induced by binding partner, by mutation and intrinsic flexibility. Our results support the interest to mine available structures associated with a target using to offer valuable insight into target flexibility and interaction mechanisms. The SA-conf executable script, with a set of pre-compiled binaries are available at http://www.mti.univ-paris-diderot.fr/recherche/plateformes/logiciels.


Subject(s)
Sequence Analysis, Protein/methods , Software , Animals , Catalytic Domain , HIV Protease/chemistry , HIV Protease/metabolism , Humans , Plasminogen Activators/chemistry , Plasminogen Activators/metabolism , Protein Binding , Protein Conformation , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...