Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 108(7): 2807-2819, 2020 10.
Article in English | MEDLINE | ID: mdl-32243682

ABSTRACT

Cell-based skin substitute generation has seen considerable development. Combining synthetic scaffolds with biomimetic fibrin does direct both exogenous and endogenous stem cell differentiation, addressing needs for reliable tissue engineering. However, lack of immediate vasculature within implantable grafts remains critical for its sustenance and integration. Multipotency, high proliferation potential, ability to release multiple growth factors (GFs), and autologous availability highlight the use of human adipose derived mesenchymal stem cells (hADMSCs) in tissue-engineered dermal grafts (TEDG) construction. However, hADMSCs' insufficiency to independently establish angiogenesis within tissue constructs demands improvement of stem cell application for dermal graft survival. Approaches to harness microenvironmentally sensitive paracrine interactions could improve the angiogenic efficiency of hADMSCs within TEDG. This study conceptualized a fibrin-based niche, to direct hADMSCs toward a nonfibrotic fibroblast commitment and incorporation of bioengineered hADMSCs, specifically releasing potent angiogenic factors within TEDG. Coexistence of tuned fibroblast and endothelial lineage committed cells contributed to well-regulated extracellular matrix formation and prevascularization. Adequate cell proliferation; sustained transient release of angiogenic GFs till 20 days; directed dermal, endothelial, fibroblast, and vascular smooth muscle cell differentiation; and favored elastin and collagen deposition were achieved in vitro. In conclusion, specific niche composition and employment of bioengineered hADMSCs favor implantable TEDG construction.


Subject(s)
Adipose Tissue/metabolism , Cell Differentiation , Dermis , Fibroblasts/metabolism , Mesenchymal Stem Cells/metabolism , Skin, Artificial , Tissue Engineering , Extracellular Matrix/metabolism , Humans
2.
Sci Rep ; 10(1): 7116, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32346006

ABSTRACT

Adipose-derived mesenchymal stem cells (hADMSC) retaining proliferation and multi-differentiation potential may support the central nervous system (CNS) regeneration. Multipotency of MSC may result in both desirable and undesirable cells, post-transplantation. A better strategy to attain desired cells may be in vitro commitment of hADMSCs to uni-/bi- potent neural progenitor cells (NPCs), prior to transplantation. Derivation of stable NPCs may require a suitable niche eliciting proliferation and differentiation signals. The present study designed a biomimetic niche comprising insoluble fibrin supported adhesion matrix and exogenously added growth factors (GFs) for deriving different neural cells and established the role of Notch and Wnt signals for proliferation and differentiation of hADMSCs, respectively. The stable transformation of hADMSCs into neurospheres (NS) comprising Nestin+ve NPCs was achieved consistently. Slight modifications of niche enable differentiation of NS to NPCs; NPCs to neurons; NPCs to oligodendrocyte progenitor cells (OPCs); and OPCs to oligodendrocytes (OLG). Fibrin plays a crucial role in the conversion of hADMSC to NS and NPCs to OPCs; but, not essential for OPC to OLG maturation. Co-survival and cell-cell interaction of NPC derived neurons and OPCs promoting OLG maturation is illustrated. The designed biomimetic niche shows the potential for directing autologous ADMSCs to neural cells for applications in regenerative medicine.


Subject(s)
Adipose Tissue/cytology , Fibrin/metabolism , Mesenchymal Stem Cells/cytology , Neurogenesis , Signal Transduction , Adipose Tissue/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Mesenchymal Stem Cells/metabolism , Receptors, Notch/metabolism , Wnt Signaling Pathway
3.
ACS Biomater Sci Eng ; 6(5): 2740-2756, 2020 05 11.
Article in English | MEDLINE | ID: mdl-33463307

ABSTRACT

Regeneration of large-sized acute and chronic wounds provoked by severe burns and diabetes is a major concern worldwide. The availability of immunocompatible matrix with a wide range of regenerative medical applications, more specifically, for nonhealing chronic wounds is an unmet clinical need. Extrapolating the in vitro tissue engineering knowledge for in vivo guided wound regeneration could be a meaningful approach. This study aimed to develop a completely human-derived and minimally immune-responsive scaffold comprising of acellular amniotic membrane (AM), fibrin (FIB) and hyaluronic acid (HA), termed AMFIBHA. The potential for in vivo guidance of skin regeneration was validated through in vitro dermal tissue assembly on the combination scaffold by growing human fibroblasts, differentiated from human adipose tissue-derived mesenchymal stem cells (hADMSCs). An effective method was standardized for obtaining decellularized amnion (dAM) for assuring better immuno-compatibility. The biochemical stability of dAM upon plasma sterilization (pdAM) confirms its suitability for both in vitro and in vivo tissue engineering. The problem of poor handling characteristics was solved by combining the dried dAM with fibrin derived from a clinically used fibrin sealant kit. An additional constituent HA, derived from human umbilical cord tissue, imparts the required water absorption and retention property for better cell migration and growth. Post sterilization, the combination scaffold AMFIBHA demonstrated hemo-/cytocompatibility, confirming the absence of detergent residuals. Upon long-term (20 days/40 days) culture of hADMSC-derived fibroblasts, the suppleness of generated tissue was established by demonstrating regulated deposition of collagen, elastin, and glycosaminoglycans using both qualitative and quantitative measurements. Regulated expressions of transforming growth factors-beta 1 (TGF-ß1) & TGF-ß3, alpha smooth muscle actin (α-SMA), fibrillin-1, collagen subtypes, and elastin suggest non-fibrotic fibroblast phenotype, which could be an effect of microenvironment endowed by the AM, FIB, and HA. In burn wound model experiments, immune response to cellular AM was prominent as compared to untreated/sham control wounds and decellularized AM-treated and AMFIBHA-treated wounds, ensuring biocompatibility. Wound regeneration with complete epithelialization, angiogenesis, development of rete pegs, and other skin appendages were clearly visualized in 28 days after treating large-sized (4 × 4 cm2), debrided, full-thickness third-degree burn wounds, indicating guided wound regeneration potential of AMFIBHA dermal substitute.


Subject(s)
Burns , Skin, Artificial , Collagen , Humans , Phenotype , Wound Healing
4.
J Obstet Gynaecol India ; 65(5): 346-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26405408

ABSTRACT

Description of successful correction of complex Mullerian anomaly, in stages using Full thickness skin graft, prior to the onset of menarche.

5.
Indian J Plast Surg ; 48(3): 301-4, 2015.
Article in English | MEDLINE | ID: mdl-26933286

ABSTRACT

Tongue plays a pivotal role in both physiological and functional life of human beings. Structural and developmental abnormalities of the tongue in various forms have been reported in isolation or in combination with various syndromes. Though cases of bifid tongues have been mentioned in literature, no reports of pentafid tongue have been reported till date. Here we describe a unique case of congenital pentafid tongue along with bilateral polydactyly and its surgical management.

SELECTION OF CITATIONS
SEARCH DETAIL
...