Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 20(10): 1836-1845, 2021 10.
Article in English | MEDLINE | ID: mdl-34253597

ABSTRACT

Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response. The FDA-approved mTOR inhibitor everolimus does not shrink these tumors. It only delays disease progression in a subset of patients, while a significant fraction acquires resistance and shows disease progression. Thus, there is a need for more effective targeted approaches to sensitize PNETs to everolimus for better treatment outcomes. Previously, we showed that mTOR regulator p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyl transferase (NAMPT) were aberrantly expressed in PNET tissue and promoted everolimus resistance. In this report, we demonstrate that PAK4-NAMPT dual inhibitor KPT-9274 can synergize with everolimus (growth inhibition, colony suppression, and glucose uptake assays). KPT-9274-everolimus disrupted spheroid formation in multiple PNET models. Molecular analysis showed alteration of mTORC2 through downregulation of RICTOR as a mechanism supporting synergy with everolimus in vitro KPT-9274 suppressed ß-catenin activity via inhibition of PAK4, highlighting the cross-talk between Rho GTPases and Wnt signaling in PNETs. KPT-9274, given at 150 mg/kg in combination with sub-MTD everolimus (2.5 mg/kg), significantly suppressed two PNET-derived xenografts. These studies bring forward a well-grounded strategy for advanced PNETs that fail to respond to single-agent everolimus.


Subject(s)
Acrylamides/pharmacology , Aminopyridines/pharmacology , Cytokines/antagonists & inhibitors , Everolimus/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neuroendocrine Tumors/drug therapy , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Pancreatic Neoplasms/drug therapy , p21-Activated Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Proliferation , Drug Therapy, Combination , Female , Humans , Mice , Mice, Inbred ICR , Mice, SCID , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Semin Cancer Biol ; 27: 74-86, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24755012

ABSTRACT

Clinical targeting of multi-dimensional proteins such as the proteasome has been efficacious in recent years. Inhibitors such as bortezomib and carfilzomib have been used successfully to treat multiple myeloma despite early skepticism surrounding unsubstantiated toxic side effects. Another target of this magnitude is ready to emerge as a clinically viable option for targeting various neoplasias. This target, XPO1 (exportin-1 also known as Chromosome Region Maintenance 1 (CRM1)), is the transport protein responsible for nuclear export of many of the major tumor suppressor proteins and cell growth regulators. Up-regulation of XPO1 protein, a common occurrence in a variety of cancers, can lead to aberrant cytoplasmic localization and degradation of tumor suppressors such as p53 and FOXO. Therefore, inhibition of XPO1 using specific small molecules collectively called Selective Inhibitors of Nuclear Export (SINE) could potentially restore normal tumor suppressor function and have universal application for the treatment of cancer. This review will discuss the current pre-clinical data on SINE compounds in both hematological and solid malignancies. Cancer treatment through direct inhibition of the proteasome and the nuclear export machinery should instill optimism for further targeting of critical cellular pathways.


Subject(s)
Active Transport, Cell Nucleus/drug effects , Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Disease Models, Animal , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Translational Research, Biomedical
3.
Mol Biol Cell ; 22(10): 1791-805, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21460183

ABSTRACT

Forkhead transcription factors (FOXOs) alter a diverse array of cellular processes including the cell cycle, oxidative stress resistance, and aging. Insulin/Akt activation directs phosphorylation and cytoplasmic sequestration of FOXO away from its target genes and serves as an endpoint of a complex signaling network. Using a human genome small interfering RNA (siRNA) library in a cell-based assay, we identified an extensive network of proteins involved in nuclear export, focal adhesion, and mitochondrial respiration not previously implicated in FOXO localization. Furthermore, a detailed examination of mitochondrial factors revealed that loss of uncoupling protein 5 (UCP5) modifies the energy balance and increases free radicals through up-regulation of uncoupling protein 3 (UCP3). The increased superoxide content induces c-Jun N-terminal kinase 1 (JNK1) kinase activity, which in turn affects FOXO localization through a compensatory dephosphorylation of Akt. The resulting nuclear FOXO increases expression of target genes, including mitochondrial superoxide dismutase. By connecting free radical defense and mitochondrial uncoupling to Akt/FOXO signaling, these results have implications in obesity and type 2 diabetes development and the potential for therapeutic intervention.


Subject(s)
Electron Transport Chain Complex Proteins/genetics , Forkhead Transcription Factors/metabolism , Genome-Wide Association Study , Mitochondria/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering/genetics , Signal Transduction/genetics , Active Transport, Cell Nucleus/genetics , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/genetics , Cell Line , Electron Transport Chain Complex Proteins/metabolism , Forkhead Box Protein O1 , Humans , Ion Channels/genetics , Ion Channels/metabolism , Membrane Potential, Mitochondrial/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Uncoupling Proteins , Mitogen-Activated Protein Kinase 8/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oxidative Phosphorylation , Protein Transport/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA Interference , Uncoupling Protein 3
4.
J Am Chem Soc ; 132(42): 14727-9, 2010 Oct 27.
Article in English | MEDLINE | ID: mdl-20925350

ABSTRACT

The principles of DNA nanotechnology and protein engineering have been combined to generate a new class of artificial extracellular matrices. The potential of this material for ex vivo cellular scaffolding was demonstrated using experiments in which human cervical cancer cells were found to adhere strongly, stay alive, and grow with high migration rates. The use of DNA in our DNA/protein-based matrices makes these structures inherently amenable to structural tunability. By engineering single-stranded domains into the DNA portions, we were able to fine-tune the scaffold's persistence length and stiffness as perceived by cells. This was used to direct the outcome of the cell's cytoskeletal arrangement and overall shape, the status of its signal transduction protein p-FAK, and the localization of its intracellular transcription factors FOXO1a. This contribution lays the groundwork for the facile and modular construction of programmable extracellular matrices that can bring about the systematic study and replication of the naturally occurring extracellular niche.


Subject(s)
DNA/chemistry , Extracellular Matrix , Female , Humans , Microscopy, Atomic Force , Uterine Cervical Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...