Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 857(Pt 1): 159343, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36228791

ABSTRACT

Cyanobacteria have been identified as promising organisms to reuse nutrients from waste effluents and produce valuable compounds such as lipids, polyhydroxyalkanoates (PHAs), and pigments. However, almost all studies on cyanobacterial biorefineries have been performed under lab scale and short cultivation periods. The present study evaluates the cultivation of the cyanobacterium Synechocystis sp. in a pilot scale 30 L semi-continuous photobioreactor fed with secondary effluent for a period of 120 days to produce phycobiliproteins, polyhydroxybutyrate (PHB) and lipids. To this end, the harvested biomass from the semi-continuous photobioreactor was transferred into 5 L vertical column batch photobioreactors to perform PHB and lipid accumulation under nutrient starvation. Three hydraulic retention times (HRT) (6, 8 and 10 days) were tested in the semi-continuous photobioreactor to evaluate its influence on biomass growth and microbial community. A maximum biomass concentration of 1.413 g L-1 and maximum productivity of 173 mg L-1 d-1 was reached under HRT of 8 days. Microscopy analysis revealed a shift from Synechocystis sp. to Leptolyngbya sp. and green algae when HRT of 6 days was used. Continuous, stable production of phycobiliproteins in the semi-continuous photobioreactor was obtained, reaching a maximum content of 7.4%dcw in the biomass. In the batch photobioreactors a PHB content of 4.8%dcw was reached under 7 days of nitrogen and phosphorus starvation, while a lipids content of 44.7%dcw was achieved under 30 days of nitrogen starvation. PHB and lipids production was strongly dependent on the amount of nutrients withdrawn from the grow phase. In the case of lipids, their production was stimulated when there was only phosphorus depletion. While Nitrogen and phosphorus limitation was needed to enhance the PHB production. In conclusion, this study demonstrates the feasibility of cultivating cyanobacteria in treated wastewater to produce bio-based valuable compounds within a circular bioeconomy approach.


Subject(s)
Microalgae , Synechocystis , Phycobiliproteins , Biomass , Wastewater , Phosphorus , Nitrogen , Lipids
2.
Sci Total Environ ; 792: 148479, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34465066

ABSTRACT

This review paper aims to identify the main sources of carbon dioxide (CO2) emissions from wastewater treatment plants (WWTPs) and highlights the technologies developed for CO2 capture in this milieu. CO2 is emitted in all the operational units of conventional WWTPs and even after the disposal of treated effluents and sludges. CO2 emissions from wastewater can be captured or mitigated by several technologies such as the production of biochar from sludge, the application of constructed wetlands (CWs), the treatment of wastewater in microbial electrochemical processes (microbial electrosynthesis, MES; microbial electrolytic carbon capture, MECC; in microbial carbon capture, MCC), and via microalgal cultivation. Sludge-to-biochar and CW systems showed a high cost-effectiveness in the capture of CO2, while MES, MECC, MCC technologies, and microalgal cultivation offered efficient capture of CO2 with associate production of value-added by-products. At the state-of-the-art, these technologies, utilized for carbon capture and utilization from wastewater, require more research for further configuration, development and cost-effectiveness. Moreover, the integration of these technologies has a potential internal rate of return (IRR) that could equate the operation or provide additional revenue to wastewater management. In the context of circular economy, these carbon capture technologies will pave the way for new sustainable concepts of WWTPs, as an essential element for the mitigation of climate change fostering the transition to a decarbonised economy.


Subject(s)
Greenhouse Gases , Carbon Dioxide/analysis , Electrolysis , Greenhouse Gases/analysis , Wastewater , Wetlands
3.
Sci Total Environ ; 786: 147475, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-33971601

ABSTRACT

The effect of addition of algae to activated sludge as active biomass in membrane bioreactors (MBRs) and electro-MBRs (e-MBRs) for wastewater remediation was examined in this study. The performances of Algae-Activated Sludge Membrane Bioreactor (AAS-MBR) and electro Algae-Activated Sludge Membrane Bioreactor (e-AAS-MBR) were compared to those observed in conventional MBR and e-MBR, which were previously reported and utilized activated sludge as biomass. The effect of application of electric field was also examined by the comparison of performances of e-AAS-MBR and AAS-MBR. Similar chemical oxygen demand (COD) reduction efficiencies of AAS-MBR, e-AAS-MBR, MBR, and e-MBR (98.35 ± 0.35%, 99.12 ± 0.08%, 97.70 ± 1.10%, and 98.10 ± 1.70%, respectively) were observed. The effect of the algae-activated sludge system was significantly higher in the nutrient removals. Ammoniacal nitrogen (NH3-N) removal efficiencies of AAS-MBR and e-AAS-MBR were higher by 43.89% and 26.61% than in the conventional MBR and e-MBR, respectively. Phosphate phosphorous (PO43--P) removals were also higher in AAS-MBR and e-AAS-MBR by 6.43% and 2.66% than those in conventional MBR and e-MBR. Membrane fouling rates in AAS-MBR and e-AAS-MBR were lower by 57.30% and 61.95% than in MBR and e-MBR, respectively. Lower concentrations of fouling substances were also observed in the reactors containing algae-activated sludge biomass. Results revealed that addition of algae improved nutrient removal and membrane fouling mitigation. The study also highlighted that the application of electric field in the e-AAS-MBR enhanced organic contaminants and nutrients removal, and fouling rate reduction.


Subject(s)
Sewage , Water Purification , Bioreactors , Membranes, Artificial , Wastewater
4.
Article in English | MEDLINE | ID: mdl-33585671

ABSTRACT

The first case of Coronavirus Disease 2019 (COVID-19), which is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), in Europe was officially confirmed in February 2020. On 11 March 2020, after thousands of deaths from this disease had been reported worldwide, the WHO changed their classification of COVID-19 from a public health emergency of international concern to a pandemic. The SARS-CoV-2 virus has been shown to be much more resistant to environmental degradation than other coated viruses. Several studies have shown that environmental conditions can influence its viability and infectivity. This review summarizes current knowledge on the transmission pathways of the novel coronavirus, and directs attention towards potentially underestimated factors that affect its propagation, notably indoor spread and outdoor risk sources. The contributions of significant indoor factors such as ventilation systems to the spread of this virus need to be carefully ascertained. Outdoor risk sources such as aerosolized particles emitted during wastewater treatment and particulate matter (PM), both of which may act as virus carriers, should be examined as well. This study shows the influence of certain underestimated factors on the environmental behavior and survival of the SARS-CoV-2 virus. These aspects of coronavirus propagation need to be accounted for when devising actions to limit not only the current pandemic but also future outbreaks.

5.
Chemosphere ; 273: 129682, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33515958

ABSTRACT

The rising of greenhouse-gas emissions (GHG), during the last 200 years, is associated to the well known global warming phenomena. One of the main sources of CO2-equivalent GHGs emissions are the environmental protection plants accounting for 1.57% of the global emissions and thus sustainable and effective technologies for their mitigation are strongly needed. The current paper presents and discusses the assessment of an innovative membrane photo-bioreactor (MPBR) whose aim was the promotion of CO2 capture from conveyed flows, such as those from wastewater treatment plants (WWTPs), landfill and composting plants, for production and energy valorisation of algal biomass. Chlorella vulgaris microalgae strain was selected as photosynthetic platform for the abovementioned purposes. The influence of various operating parameters has been explored, including the photosynthetic photon flux densities (PPFD) (60 and 120 µmol m-2 s-1), liquid/gas ratio (L/G = 5, 10 or 15) and CO2 concentration (5, 10 and 15%) in order to investigated their effects on carbon capture effectiveness and biomass production. The results demonstrated that the increasing of PPFD significantly enhanced the biomass production in terms of biomass productivity (P) and total dry weight (DW). The highest biomass concentration of 1.01 g L-1 was achieved at PPFD of 120 µmol m-2 s-1 with a L/G of 15. Under the aforementioned conditions, carbon dioxide removal efficiency (RE) reached values up to 80%. In addition, the novel MPBR equipped with an innovative self-forming dynamic membrane (SFDM) showed a simultaneous biomass harvesting rate of 41 g m-2 h-1.


Subject(s)
Chlorella vulgaris , Microalgae , Biomass , Carbon Dioxide , Photobioreactors
6.
Nat Biotechnol ; 33(12): 1232-1234, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26650007
SELECTION OF CITATIONS
SEARCH DETAIL
...