Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 46(6): 1323-1331, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29293832

ABSTRACT

The Agricultural Policy Environmental eXtender (APEX) model is capable of estimating edge-of-field water, nutrient, and sediment transport and is used to assess the environmental impacts of management practices. The current practice is to fully calibrate the model for each site simulation, a task that requires resources and data not always available. The objective of this study was to compare model performance for flow, sediment, and phosphorus transport under two parameterization schemes: a best professional judgment (BPJ) parameterization based on readily available data and a fully calibrated parameterization based on site-specific soil, weather, event flow, and water quality data. The analysis was conducted using 12 datasets at four locations representing poorly drained soils and row-crop production under different tillage systems. Model performance was based on the Nash-Sutcliffe efficiency (NSE), the coefficient of determination () and the regression slope between simulated and measured annualized loads across all site years. Although the BPJ model performance for flow was acceptable (NSE = 0.7) at the annual time step, calibration improved it (NSE = 0.9). Acceptable simulation of sediment and total phosphorus transport (NSE = 0.5 and 0.9, respectively) was obtained only after full calibration at each site. Given the unacceptable performance of the BPJ approach, uncalibrated use of APEX for planning or management purposes may be misleading. Model calibration with water quality data prior to using APEX for simulating sediment and total phosphorus loss is essential.


Subject(s)
Agriculture , Phosphorus/analysis , Water Quality , Environmental Monitoring , Humans , Judgment , Models, Theoretical , Rivers , Water Movements
2.
J Environ Qual ; 43(4): 1381-91, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25603085

ABSTRACT

Hydrologic models are essential tools for environmental assessment of agricultural nonpoint-source pollution. The automatic calibration of hydrologic models, though efficient, demands significant computational power, limiting their application. The study objective was to develop and evaluate a stepwise, multiobjective, multivariable automatic calibration method for the Agricultural Environmental Policy eXtender (APEX) model for simulating runoff, sediment, total phosphorus (TP), and total nitrogen (TN). The most sensitive parameters were grouped according to the process they primarily affect (runoff, sediment transport, soil biological activity, TP transport, and TN transport) and were optimized separately and consecutively. Two multiobjective functions comprising combinations of coefficient of determination (), regression slope, and Nash-Sutcliffe coefficient (NSC) and a global objective function, the Generalized Likelihood Uncertainty Estimation, were considered to select the optimal parameter combination. A previously manually calibrated and validated APEX model for three adjacent row-crop field-size watersheds in northeast Missouri was used as the baseline. The greatest improvements in model performance for sediment, TP, and TN, but not for runoff, were found after runoff parameter optimization, indicating that runoff parameter optimization was crucial for good simulation of sediment and nutrients. The values for sediment, TP, and TN improved from 0.59-0.87 to 0.77-0.94. The NSC values for TP also improved after soil biological activity and TP parameter optimizations, but subsequent optimizations did not improve sediment or TN simulations. The objective function based on , slope, and NSC outperformed the other objective functions. Modelers can benefit from this cost-efficient optimization technique (2570 runs for 23 parameters).

SELECTION OF CITATIONS
SEARCH DETAIL
...