Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36012102

ABSTRACT

The use of 3D in vitro tumor models has become a common trend in cancer biology studies as well as drug screening and preclinical testing of drug candidates. The transition from 2D to 3D matrix-based cell cultures requires modification of methods for assessing tumor growth. We propose the method for assessing the growth of tumor cells in a collagen hydrogel using macro-scale registration and quantification of the gel epi-fluorescence. The technique does not require gel destruction, can be used for real-time observation of fast (in seconds) cellular responses and demonstrates high agreement with cell counting approaches or measuring total DNA content. The potency of the method was proven in experiments aimed at testing cytotoxic activity of chemotherapeutic drug (cisplatin) and recombinant targeted toxin (DARPin-LoPE) against two different tumor cell lines genetically labelled with fluorescent proteins. Moreover, using fluorescent proteins with sensor properties allows registration of dynamic changes in cells' metabolism, which was shown for the case of sensor of caspase 3 activity.


Subject(s)
Cisplatin , Collagen , Cell Line, Tumor , Cell Proliferation , Fluorescence
2.
Biology (Basel) ; 9(12)2020 12 04.
Article in English | MEDLINE | ID: mdl-33291824

ABSTRACT

Tumor resistance to therapy is associated with the 3D organization and peculiarities of the tumor microenvironment, of which intercellular adhesion is a key participant. In this work, the abundance of contact proteins was compared in SKOV-3 and SKOV-3.ip human ovarian adenocarcinoma cell lines, cultivated in monolayers, tumor spheroids and collagen hydrogels. Three-dimensional models were characterized by extremely low expression of basic molecules of adherens junctions E-cadherin and demonstrated a simultaneous decrease in desmosomal protein desmoglein-2, gap junction protein connexin-43 and tight junction proteins occludin and ZO-1. The reduction in the level of contact proteins was most pronounced in collagen hydrogel, accompanied by significantly increased resistance to treatment with doxorubicin and targeted anticancer toxin DARPin-LoPE. Thus, we suggest that 3D models of ovarian cancer, especially matrix-based models, tend to recapitulate tumor microenvironment and treatment responsiveness to a greater extent than monolayer culture, so they can be used as a highly relevant platform for drug efficiency evaluation.

3.
Toxicol Sci ; 170(1): 123-132, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30985900

ABSTRACT

Upconversion nanoparticles (UCNPs) are new-generation photoluminescent nanomaterials gaining considerable recognition in the life sciences due to their unique optical properties that allow high-contrast imaging in cells and tissues. Upconversion nanoparticle applications in optical diagnosis, bioassays, therapeutics, photodynamic therapy, drug delivery, and light-controlled release of drugs are promising, demanding a comprehensive systematic study of their pharmacological properties. We report on production of biofunctional UCNP-based nanocomplexes suitable for optical microscopy and imaging of HER2-positive cells and tumors, as well as on the comprehensive evaluation of their pharmacokinetics, pharmacodynamics, and toxicological properties using cells and laboratory animals. The nanocomplexes represent a UCNP core/shell structure of the NaYF4:Yb, Er, Tm/NaYF4 composition coated with an amphiphilic alternating copolymer of maleic anhydride with 1-octadecene (PMAO) and conjugated to the Designed Ankyrin Repeat Protein (DARPin 9_29) with high affinity to the HER2 receptor. We demonstrated the specific binding of UCNP-PMAO-DARPin to HER2-positive cancer cells in cultures and xenograft animal models allowing the tumor visualization for at least 24 h. An exhaustive study of the general and specific toxicity of UCNP-PMAO-DARPin including the evaluation of their allergenic, immunotoxic, and reprotoxic properties was carried out. The obtained experimental body of evidence leads to a conclusion that UCNP-PMAO and UCNP-PMAO-DARPin are functional, noncytotoxic, biocompatible, and safe for imaging applications in cells, small animals, and prospective clinical applications of image-guided surgery.


Subject(s)
Mammary Neoplasms, Experimental/diagnostic imaging , Nanoparticles/chemistry , Polymers/chemistry , Whole Body Imaging/methods , Animals , CHO Cells , Cell Line, Tumor , Cricetulus , Drug Evaluation, Preclinical , Erbium/chemistry , Escherichia coli/genetics , Fluorides/chemistry , Humans , Luminescent Measurements , Nanoparticles/metabolism , Nanoparticles/toxicity , Polymers/pharmacokinetics , Polymers/toxicity , Receptor, ErbB-2/genetics , Surface Properties , Thulium/chemistry , Tissue Distribution , Yttrium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...