Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 40(2): 153-167.e11, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35120601

ABSTRACT

TH2 cells and innate lymphoid cells 2 (ILC2) can stimulate tumor growth by secreting pro-tumorigenic cytokines such as interleukin-4 (IL-4), IL-5, and IL-13. However, the mechanisms by which type 2 immune cells traffic to the tumor microenvironment are unknown. Here, we show that oncogenic KrasG12D increases IL-33 expression in pancreatic ductal adenocarcinoma (PDAC) cells, which recruits and activates TH2 and ILC2 cells. Correspondingly, cancer-cell-specific deletion of IL-33 reduces TH2 and ILC2 recruitment and promotes tumor regression. Unexpectedly, IL-33 secretion is dependent on the intratumoral fungal mycobiome. Genetic deletion of IL-33 or anti-fungal treatment decreases TH2 and ILC2 infiltration and increases survival. Consistently, high IL-33 expression is observed in approximately 20% of human PDAC, and expression is mainly restricted to cancer cells. These data expand our knowledge of the mechanisms driving PDAC tumor progression and identify therapeutically targetable pathways involving intratumoral mycobiome-driven secretion of IL-33.


Subject(s)
Immunity, Innate , Interleukin-33/biosynthesis , Mycobiome , Pancreatic Neoplasms/etiology , Pancreatic Neoplasms/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Biomarkers , Disease Models, Animal , Disease Progression , Disease Susceptibility , Gene Expression Regulation, Neoplastic , Humans , Immunophenotyping , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Models, Biological , Mycobiome/immunology , Pancreatic Neoplasms/mortality , Pancreatic Neoplasms/pathology , Prognosis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Pancreatic Neoplasms
2.
Hypertension ; 76(4): 1113-1123, 2020 10.
Article in English | MEDLINE | ID: mdl-32829656

ABSTRACT

Oxidative stress and inflammation play key roles in development of pulmonary arterial hypertension (PAH). We previously reported that an endothelial cell (EC)-specific cyclophilin A overexpression mouse developed many characteristics of PAH. In other models of cardiovascular disease, cyclophilin A stimulates smooth muscle proliferation and vascular inflammation, but mechanisms responsible for PAH have not been defined. In particular, the contribution of endothelial-to-mesenchymal transition in cyclophilin A-mediated PAH has not been studied. We identified increased levels of cyclophilin A in endothelial and neointimal cells of pulmonary arteries in patients with PAH and animal pulmonary hypertension models. In the EC-specific cyclophilin A overexpression mouse that exhibited features characteristic of PAH, lineage tracing showed high level expression of mesenchymal markers in pulmonary ECs. A significant number of mesenchymal cells in media and perivascular regions of pulmonary arterioles and alveoli were derived from ECs. Pulmonary ECs isolated from these mice showed phenotypic changes characteristic of endothelial-to-mesenchymal transition in culture. Cultured pulmonary ECs stimulated with extracellular cyclophilin A and acetylated cyclophilin A demonstrated functional changes associated with endothelial-to-mesenchymal transition such as increased cytokine release, migration, proliferation, and mitochondrial dysfunction. Acetylated cyclophilin A stimulated greater increases for most features of endothelial-to-mesenchymal transition. In conclusion, extracellular cyclophilin A (especially acetylated form) contributes to PAH by mechanisms involving increased endothelial-to-mesenchymal transition, cytokine release, EC migration, proliferation, and mitochondrial dysfunction; strengthening the basis for studying cyclophilin A inhibition as a therapy for PAH.


Subject(s)
Cyclophilin A/metabolism , Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Pulmonary Artery/metabolism , Animals , Cells, Cultured , Cyclophilin A/genetics , Cyclophilin A/pharmacology , Endothelial Cells/drug effects , Humans , Hypertension, Pulmonary/genetics , Inflammation/genetics , Inflammation/metabolism , Mice , Mice, Transgenic , Pulmonary Artery/drug effects
3.
Cell Rep ; 17(10): 2532-2541, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27926858

ABSTRACT

The spatiotemporal localization and expression of Dll4 are critical for sprouting angiogenesis. However, the related mechanisms are poorly understood. Here, we show that G-protein-coupled receptor-kinase interacting protein-1 (GIT1) is a robust endogenous inhibitor of Dll4-Notch1 signaling that specifically controls stalk cell fate. GIT1 is highly expressed in stalk cells but not in tip cells. GIT1 deficiency remarkably enhances Dll4 expression and Notch1 signaling, resulting in impaired retinal sprouting angiogenesis, which can be rescued by treatment with the Notch inhibitor or Dll4 neutralizing antibody. Notch1 regulates Dll4 expression by binding to recombining binding protein suppressor of hairless (RBP-J, a transcriptional regulator of Notch) via a highly conserved ankyrin (ANK) repeat domain. We show that GIT1, which also contains an ANK domain, inhibits the Notch1-Dll4 signaling pathway by competing with Notch1 ANK domain for binding to RBP-J in stalk cells.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Neovascularization, Physiologic/genetics , Receptor, Notch1/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Endothelial Cells/metabolism , Gene Expression Regulation , Human Umbilical Vein Endothelial Cells , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Protein Binding , Receptor, Notch1/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...