Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 113(3): 568-75, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26332572

ABSTRACT

Recent advances in the productivity of industrial mammalian cell culture processes have resulted in part in increased cell density. This increase and the associated increase in cellular debris are known to challenge harvest operations, however this understanding is limited and largely qualitative. Part of the issue arises from the heterogeneous size and composition of cellular debris, which makes harvest feed stream extremely difficult to characterize. Improved characterization methods would facilitate the development of clarification approaches that are consistent and scalable. This work describes how both particle size and cholesterol analysis can be used to characterize the feed stream. Particle size analysis by focused beam reflectance and dynamic light scattering are shown to be predictive of centrate filterability under certain harvest conditions. Because of the particle size range limitations of each detector, their applicability is limited to a particular stage or method of clarification. The measurement of cholesterol present in the cell culture supernatant or centrate was successfully used in providing relative amount of lysed cellular debris and enabled us to predict clarification performance of acid precipitated harvest regardless of particle size distribution profile.


Subject(s)
Biological Products/isolation & purification , Biological Products/metabolism , Biotechnology/methods , Cell Culture Techniques
2.
MAbs ; 7(2): 413-28, 2015.
Article in English | MEDLINE | ID: mdl-25706650

ABSTRACT

High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate. We discuss here the use of a novel and simple two-polymer flocculation method used to harvest mAb from high cell mass cell culture processes. The addition of the polycationic polymer, poly diallyldimethylammonium chloride (PDADMAC) to the cell culture broth flocculates negatively-charged cells and cellular debris via an ionic interaction mechanism. Incorporation of a non-ionic polymer such as polyethylene glycol (PEG) into the PDADMAC flocculation results in larger flocculated particles with faster settling rate compared to PDADMAC-only flocculation. PDADMAC also flocculates the negatively-charged sub-micron particles to produce a feed stream with a significantly higher harvest filter train throughput compared to a typical centrifuged harvest feed stream. Cell culture process variability such as lactate production, cellular debris and cellular densities were investigated to determine the effect on flocculation. Since PDADMAC is cytotoxic, purification process clearance and toxicity assessment were performed.


Subject(s)
Antibodies, Monoclonal/isolation & purification , Polyethylene Glycols/chemistry , Polyethylenes/chemistry , Quaternary Ammonium Compounds/chemistry , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/chemistry , CHO Cells , Centrifugation , Cricetinae , Cricetulus , Flocculation , Humans
3.
Biotechnol Bioeng ; 103(5): 930-5, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19382248

ABSTRACT

Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity.


Subject(s)
Chromatography/methods , Hydrophobic and Hydrophilic Interactions , Proteins/isolation & purification , Proteins/metabolism , Salts/metabolism , Protein Binding
4.
J Pharm Sci ; 96(7): 1677-90, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17221853

ABSTRACT

Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers.


Subject(s)
Chromatography, Affinity , Chromatography, Ion Exchange , Proteins/isolation & purification , Salts/chemistry , Technology, Pharmaceutical/methods , Chromatography, Affinity/instrumentation , Chromatography, Ion Exchange/instrumentation , Equipment Design , Hydrophobic and Hydrophilic Interactions , Ligands , Models, Chemical , Osmolar Concentration , Protein Binding , Proteins/chemistry , Surface Properties , Technology, Pharmaceutical/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...