Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 20(203): 20230195, 2023 06.
Article in English | MEDLINE | ID: mdl-37376873

ABSTRACT

Teeth must fracture foods while avoiding being fractured themselves. This study evaluated dome biomechanical models used to describe tooth strength. Finite-element analysis (FEA) tested whether the predictions of the dome models applied to the complex geometry of an actual tooth. A finite-element model was built from microCT scans of a human M3. The FEA included three loading regimes simulating contact between (i) a hard object and a single cusp tip, (ii) a hard object and all major cusp tips and (iii) a soft object and the entire occlusal basin. Our results corroborate the dome models with respect to the distribution and orientation of tensile stresses, but document heterogeneity of stress orientation across the lateral enamel. This implies that high stresses might not cause fractures to fully propagate between cusp tip and cervix under certain loading conditions. The crown is most at risk of failing during hard object biting on a single cusp. Geometrically simple biomechanical models are valuable tools for understanding tooth function but do not fully capture aspects of biomechanical performance in actual teeth whose complex geometries may reflect adaptations for strength.


Subject(s)
Bite Force , Tooth , Humans , Biomechanical Phenomena , Tooth/diagnostic imaging , Finite Element Analysis , Tensile Strength , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...