Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 541(7637): 365-370, 2017 01 19.
Article in English | MEDLINE | ID: mdl-28077877

ABSTRACT

In the Drosophila optic lobes, 800 retinotopically organized columns in the medulla act as functional units for processing visual information. The medulla contains over 80 types of neuron, which belong to two classes: uni-columnar neurons have a stoichiometry of one per column, while multi-columnar neurons contact multiple columns. Here we show that combinatorial inputs from temporal and spatial axes generate this neuronal diversity: all neuroblasts switch fates over time to produce different neurons; the neuroepithelium that generates neuroblasts is also subdivided into six compartments by the expression of specific factors. Uni-columnar neurons are produced in all spatial compartments independently of spatial input; they innervate the neuropil where they are generated. Multi-columnar neurons are generated in smaller numbers in restricted compartments and require spatial input; the majority of their cell bodies subsequently move to cover the entire medulla. The selective integration of spatial inputs by a fixed temporal neuroblast cascade thus acts as a powerful mechanism for generating neural diversity, regulating stoichiometry and the formation of retinotopy.


Subject(s)
Body Patterning , Cell Differentiation , Drosophila melanogaster/cytology , Neurogenesis , Neurons/cytology , Optic Lobe, Nonmammalian/cytology , Animals , Body Patterning/genetics , Brain/cytology , Brain/growth & development , Brain/metabolism , Cell Movement , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Female , Male , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Neurons/metabolism , Neuropil/cytology , Neuropil/metabolism , Optic Lobe, Nonmammalian/growth & development , Optic Lobe, Nonmammalian/metabolism , Pupa/cytology , Pupa/genetics , Pupa/growth & development , Spatio-Temporal Analysis , Time Factors
2.
Electrophoresis ; 32(21): 2921-9, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22002021

ABSTRACT

Knowledge of the genetic changes that lead to disease has grown and continues to grow at a rapid pace. However, there is a need for clinical devices that can be used routinely to translate this knowledge into the treatment of patients. Use in a clinical setting requires high sensitivity and specificity (>97%) in order to prevent misdiagnoses. Single-strand conformational polymorphism (SSCP) and heteroduplex analysis (HA) are two DNA-based, complementary methods for mutation detection that are inexpensive and relatively easy to implement. However, both methods are most commonly detected by slab gel electrophoresis, which can be labor-intensive, time-consuming, and often the methods are unable to produce high sensitivity and specificity without the use of multiple analysis conditions. Here, we demonstrate the first blinded study using microchip electrophoresis (ME)-SSCP/HA. We demonstrate the ability of ME-SSCP/HA to detect with 98% sensitivity and specificity >100 samples from the p53 gene exons 5-9 in a blinded study in an analysis time of <10 min.


Subject(s)
Electrophoresis, Microchip/methods , Genes, p53 , Heteroduplex Analysis/methods , Mutation , Polymorphism, Single-Stranded Conformational , DNA/analysis , DNA/genetics , DNA Mutational Analysis/methods , Humans , Neoplasms/genetics , Research Design , Sensitivity and Specificity
3.
Nature ; 471(7339): 527-31, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21430782

ABSTRACT

Systematic annotation of gene regulatory elements is a major challenge in genome science. Direct mapping of chromatin modification marks and transcriptional factor binding sites genome-wide has successfully identified specific subtypes of regulatory elements. In Drosophila several pioneering studies have provided genome-wide identification of Polycomb response elements, chromatin states, transcription factor binding sites, RNA polymerase II regulation and insulator elements; however, comprehensive annotation of the regulatory genome remains a significant challenge. Here we describe results from the modENCODE cis-regulatory annotation project. We produced a map of the Drosophila melanogaster regulatory genome on the basis of more than 300 chromatin immunoprecipitation data sets for eight chromatin features, five histone deacetylases and thirty-eight site-specific transcription factors at different stages of development. Using these data we inferred more than 20,000 candidate regulatory elements and validated a subset of predictions for promoters, enhancers and insulators in vivo. We identified also nearly 2,000 genomic regions of dense transcription factor binding associated with chromatin activity and accessibility. We discovered hundreds of new transcription factor co-binding relationships and defined a transcription factor network with over 800 potential regulatory relationships.


Subject(s)
Drosophila melanogaster/genetics , Genome, Insect/genetics , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid/genetics , Animals , Chromatin/metabolism , Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation , Enhancer Elements, Genetic/genetics , Histone Deacetylases/metabolism , Insulator Elements/genetics , Promoter Regions, Genetic/genetics , Reproducibility of Results , Silencer Elements, Transcriptional/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...