Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
NPJ Biofilms Microbiomes ; 9(1): 10, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36864092

ABSTRACT

Cyanobacterial biofilms are ubiquitous and play important roles in diverse environments, yet, understanding of the processes underlying the development of these aggregates is just emerging. Here we report cell specialization in formation of Synechococcus elongatus PCC 7942 biofilms-a hitherto unknown characteristic of cyanobacterial social behavior. We show that only a quarter of the cell population expresses at high levels the four-gene ebfG-operon that is required for biofilm formation. Almost all cells, however, are assembled in the biofilm. Detailed characterization of EbfG4 encoded by this operon revealed cell-surface localization as well as its presence in the biofilm matrix. Moreover, EbfG1-3 were shown to form amyloid structures such as fibrils and are thus likely to contribute to the matrix structure. These data suggest a beneficial 'division of labor' during biofilm formation where only some of the cells allocate resources to produce matrix proteins-'public goods' that support robust biofilm development by the majority of the cells. In addition, previous studies revealed the operation of a self-suppression mechanism that depends on an extracellular inhibitor, which supresses transcription of the ebfG-operon. Here we revealed inhibitor activity at an early growth stage and its gradual accumulation along the exponential growth phase in correlation with cell density. Data, however, do not support a threshold-like phenomenon known for quorum-sensing in heterotrophs. Together, data presented here demonstrate cell specialization and imply density-dependent regulation thereby providing deep insights into cyanobacterial communal behavior.


Subject(s)
Biofilms , Extracellular Matrix Proteins , Extracellular Matrix Proteins/genetics , Extracellular Polymeric Substance Matrix , Quorum Sensing , Amyloidogenic Proteins
2.
Front Microbiol ; 13: 899150, 2022.
Article in English | MEDLINE | ID: mdl-35814646

ABSTRACT

Biofilm formation by photosynthetic organisms is a complex behavior that serves multiple functions in the environment. Biofilm formation in the unicellular cyanobacterium Synechococcus elongatus PCC 7942 is regulated in part by a set of small secreted proteins that promotes biofilm formation and a self-suppression mechanism that prevents their expression. Little is known about the regulatory and structural components of the biofilms in PCC 7942, or response to the suppressor signal(s). We performed transcriptomics (RNA-Seq) and phenomics (RB-TnSeq) screens that identified four genes involved in biofilm formation and regulation, more than 25 additional candidates that may impact biofilm formation, and revealed the transcriptomic adaptation to the biofilm state. In so doing, we compared the effectiveness of these two approaches for gene discovery.

3.
Environ Microbiol Rep ; 14(2): 218-229, 2022 04.
Article in English | MEDLINE | ID: mdl-35172394

ABSTRACT

A biofilm inhibiting mechanism operates in the cyanobacterium Synechococcus elongatus. Here, we demonstrate that the glycosyltransferase homologue, Ogt, participates in the inhibitory process - inactivation of ogt results in robust biofilm formation. Furthermore, a mutational approach shows requirement of the glycosyltransferase activity for biofilm inhibition. This enzyme is necessary for glycosylation of the pilus subunit and for adequate pilus formation. In contrast to wild-type culture in which most cells exhibit several pili, only 25% of the mutant cells are piliated, half of which possess a single pilus. In spite of this poor piliation, natural DNA competence was similar to that of wild-type; therefore, we propose that the unglycosylated pili facilitate DNA transformation. Additionally, conditioned medium from wild-type culture, which contains a biofilm inhibiting substance(s), only partially blocks biofilm development by the ogt-mutant. Thus, we suggest that inactivation of ogt affects multiple processes including production or secretion of the inhibitor as well as the ability to sense or respond to it.


Subject(s)
Fimbriae Proteins , Glycosyltransferases , Bacterial Proteins/genetics , Biofilms , Fimbriae Proteins/genetics , Fimbriae, Bacterial/genetics , Glycosyltransferases/genetics , Mutation
4.
mBio ; 12(2)2021 03 16.
Article in English | MEDLINE | ID: mdl-33727363

ABSTRACT

Protein secretion as well as the assembly of bacterial motility appendages are central processes that substantially contribute to fitness and survival. This study highlights distinctive features of the mechanism that serves these functions in cyanobacteria, which are globally prevalent photosynthetic prokaryotes that significantly contribute to primary production. Our studies of biofilm development in the cyanobacterium Synechococcus elongatus uncovered a novel component required for the biofilm self-suppression mechanism that operates in this organism. This protein, which is annotated as "hypothetical," is denoted EbsA (essential for biofilm self-suppression A) here. EbsA homologs are highly conserved and widespread in diverse cyanobacteria but are not found outside this clade. We revealed a tripartite complex of EbsA, Hfq, and the ATPase homolog PilB (formerly called T2SE) and demonstrated that each of these components is required for the assembly of the hairlike type IV pili (T4P) appendages, for DNA competence, and affects the exoproteome in addition to its role in biofilm self-suppression. These data are consistent with bioinformatics analyses that reveal only a single set of genes in S. elongatus to serve pilus assembly or protein secretion; we suggest that a single complex is involved in both processes. A phenotype resulting from the impairment of the EbsA homolog in the cyanobacterium Synechocystis sp. strain PCC 6803 implies that this feature is a general cyanobacterial trait. Moreover, comparative exoproteome analyses of wild-type and mutant strains of S. elongatus suggest that EbsA and Hfq affect the exoproteome via a process that is independent of PilB, in addition to their involvement in a T4P/secretion machinery.IMPORTANCE Cyanobacteria, environmentally prevalent photosynthetic prokaryotes, contribute ∼25% of global primary production. Cyanobacterial biofilms elicit biofouling, thus leading to substantial economic losses; however, these microbial assemblages can also be beneficial, e.g., in wastewater purification processes and for biofuel production. Mechanistic aspects of cyanobacterial biofilm development were long overlooked, and genetic and molecular information emerged only in recent years. The importance of this study is 2-fold. First, it identifies novel components of cyanobacterial biofilm regulation, thus contributing to the knowledge of these processes and paving the way for inhibiting detrimental biofilms or promoting beneficial ones. Second, the data suggest that cyanobacteria may employ the same complex for the assembly of the motility appendages, type 4 pili, and protein secretion. A shared pathway was previously shown in only a few cases of heterotrophic bacteria, whereas numerous studies demonstrated distinct systems for these functions. Thus, our study broadens the understanding of pilus assembly/secretion in diverse bacteria and furthers the aim of controlling the formation of cyanobacterial biofilms.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Fimbriae, Bacterial/physiology , Proteome , Synechococcus/chemistry , Synechococcus/physiology , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Organelle Biogenesis , Protein Transport , Secretory Pathway/genetics , Secretory Pathway/physiology , Synechococcus/genetics
5.
Environ Microbiol Rep ; 11(3): 456-463, 2019 06.
Article in English | MEDLINE | ID: mdl-30868754

ABSTRACT

Small secreted compounds, e.g. microcins, are characterized by a double-glycine (GG) secretion motif that is cleaved off upon maturation. Genomic analysis suggests that small proteins that possess a GG motif are widespread in cyanobacteria; however, the roles of these proteins are largely unknown. Using a biofilm-proficient mutant of the cyanobacterium Synechococcus elongatus PCC 7942 in which the constitutive biofilm self-suppression mechanism is inactivated, we previously demonstrated that four small proteins, Enable biofilm formation with a GG motif (EbfG1-4), each with a GG motif, enable biofilm formation. Furthermore, a peptidase belonging to the C39 family, Peptidase transporter enabling Biofilm (PteB), is required for secretion of these proteins. Here, we show that the microcin processing peptidase-like protein encoded by gene Synpcc7942_1127 is also required for biofilm development - inactivation of this gene in the biofilm-proficient mutant abrogates biofilm development. Additionally, this peptidase-like protein (denoted EbfE - enables biofilm formation peptidase) is required for secretion of the EbfG biofilm-promoting small proteins. Given their protein-domain characteristics, we suggest that PteB and EbfE take part in a maturation-secretion system, with PteB being located to the cell membrane while EbfE is directed to the periplasmic space via its secretion signal.


Subject(s)
Bacterial Proteins/metabolism , Bacteriocins/metabolism , Biofilms/growth & development , Peptide Hydrolases/metabolism , Synechococcus/metabolism , Amino Acid Motifs , Bacteriocins/chemistry , Bacteriocins/genetics , Extracellular Space/metabolism , Mutation , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Protein Processing, Post-Translational , Protein Transport , Proteome , Synechococcus/chemistry , Synechococcus/genetics , Synechococcus/physiology
6.
Plant J ; 94(5): 813-821, 2018 06.
Article in English | MEDLINE | ID: mdl-29575252

ABSTRACT

Phycobilisomes, the macromolecular light harvesting complexes of cyanobacteria are degraded under nutrient-limiting conditions. This crucial response is required to adjust light excitation to the metabolic status and avoid damage by excess excitation. Phycobilisomes are comprised of phycobiliproteins, apo-proteins that covalently bind bilin chromophores. In the cyanobacterium Synechococcus elongatus, the phycobiliproteins allophycocyanin and phycocyanin comprise the core and the rods of the phycobilisome, respectively. Previously, NblB was identified as an essential component required for phycocyanin degradation under nutrient starvation. This protein is homologous to bilin-lyases, enzymes that catalyze the covalent attachment of bilins to apo-proteins. However, the nblB-inactivated strain is not impaired in phycobiliprotein synthesis, but rather is characterized by aberrant phycocyanin degradation. Here, using a phycocyanin-deficient strain, we demonstrate that NblB is required for degradation of the core pigment, allophycocyanin. Furthermore, we show that the protein NblB is expressed under nutrient sufficient conditions, but during nitrogen starvation its level decreases about two-fold. This finding is in contrast to an additional component essential for degradation, NblA, the expression of which is highly induced under starvation. We further identified NblB residues required for phycocyanin degradation in vivo. Finally, we demonstrate phycocyanin degradation in a cell-free system, thereby providing support for the suggestion that NblB directly mediates pigment degradation by chromophore detachment. The dependence of NblB function on NblA revealed using this system, together with the results indicating presence of NblB under nutrient sufficient conditions, suggests a rapid mechanism for induction of pigment degradation, which requires only the expression of NblA.


Subject(s)
Bacterial Proteins/metabolism , Lyases/metabolism , Phycobiliproteins/metabolism , Synechococcus/metabolism , Bacterial Proteins/physiology , Bile Pigments/metabolism , Phycobiliproteins/physiology , Phycobilisomes/metabolism , Phycocyanin/metabolism , Synechococcus/enzymology
7.
Environ Microbiol ; 19(7): 2862-2872, 2017 07.
Article in English | MEDLINE | ID: mdl-28585390

ABSTRACT

The hair-like cell appendages denoted as type IV pili are crucial for biofilm formation in diverse eubacteria. The protein complex responsible for type IV pilus assembly is homologous with the type II protein secretion complex. In the cyanobacterium Synechococcus elongatus PCC 7942, the gene Synpcc7942_2071 encodes an ATPase homologue of type II/type IV systems. Here, we report that inactivation of Synpcc7942_2071 strongly affected the suite of proteins present in the extracellular milieu (exo-proteome) and eliminated pili observable by electron microscopy. These results support a role for this gene product in protein secretion as well as in pili formation. As we previously reported, inactivation of Synpcc7942_2071 enables biofilm formation and suppresses the planktonic growth of S. elongatus. Thus, pili are dispensable for biofilm development in this cyanobacterium, in contrast to their biofilm-promoting function in type IV pili-producing heterotrophic bacteria. Nevertheless, pili removal is not required for biofilm formation as evident by a piliated mutant of S. elongatus that develops biofilms. We show that adhesion and timing of biofilm development differ between the piliated and non-piliated strains. The study demonstrates key differences in the process of biofilm formation between cyanobacteria and well-studied type IV pili-producing heterotrophic bacteria.


Subject(s)
Biofilms/growth & development , Fimbriae, Bacterial/genetics , Synechococcus/genetics , Bacterial Adhesion/genetics , Bacterial Adhesion/physiology , Fimbriae, Bacterial/classification , Fimbriae, Bacterial/metabolism , Microscopy, Electron , Synechococcus/growth & development
8.
Bio Protoc ; 7(14): e2406, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-34541137

ABSTRACT

A self-suppression mechanism of biofilm development in the cyanobacterium Synechococcus elongatus PCC 7942 was recently reported. These studies required quantification of biofilms formed by mutants impaired in the biofilm-inhibitory process. Here we describe in detail the use of chlorophyll measurements as a proxy for biomass accumulation in sessile and planktonic cells of biofilm-forming strains. These measurements allow quantification of the total biomass as estimated by chlorophyll level and representation of the extent of biofilm formation by depicting the relative fraction of chlorophyll in planktonic cells.

9.
Sci Rep ; 6: 32209, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27558743

ABSTRACT

Small proteins characterized by a double-glycine (GG) secretion motif, typical of secreted bacterial antibiotics, are encoded by the genomes of diverse cyanobacteria, but their functions have not been investigated to date. Using a biofilm-forming mutant of Synechococcus elongatus PCC 7942 and a mutational approach, we demonstrate the involvement of four small secreted proteins and their GG-secretion motifs in biofilm development. These proteins are denoted EbfG1-4 (enable biofilm formation with a GG-motif). Furthermore, the conserved cysteine of the peptidase domain of the Synpcc7942_1133 gene product (dubbed PteB for peptidase transporter essential for biofilm) is crucial for biofilm development and is required for efficient secretion of the GG-motif containing proteins. Transcriptional profiling of ebfG1-4 indicated elevated transcript levels in the biofilm-forming mutant compared to wild type (WT). However, these transcripts decreased, acutely but transiently, when the mutant was cultured in extracellular fluids from a WT culture, and biofilm formation was inhibited. We propose that WT cells secrete inhibitor(s) that suppress transcription of ebfG1-4, whereas secretion of the inhibitor(s) is impaired in the biofilm-forming mutant, leading to synthesis and secretion of EbfG1-4 and supporting the formation of biofilms.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Synechococcus/physiology , Amino Acid Motifs , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cysteine Proteases/genetics , Cysteine Proteases/metabolism , Gene Expression Regulation, Bacterial , Glycine , Mutation , Synechococcus/genetics
10.
Plant J ; 83(5): 845-52, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26173720

ABSTRACT

The cyanobacterial light-harvesting complex, the phycobilisome, is degraded under nutrient limitation, allowing the cell to adjust light absorbance to its metabolic capacity. This large light-harvesting antenna comprises a core complex of the pigment allophycocyanin, and rod-shaped pigment assemblies emanating from the core. NblA, a low-molecular-weight protein, is essential for degradation of the phycobilisome. NblA mutants exhibit high absorbance of rod pigments under conditions that generally elicit phycobilisome degradation, implicating NblA in degradation of these pigments. However, the vast abundance of rod pigments and the substantial overlap between the absorbance spectra of rod and core pigments has made it difficult to directly associate NblA with proteolysis of the phycobilisome core. Furthermore, lack of allophycocyanin degradation in an NblA mutant may reflect a requirement for rod degradation preceding core degradation, and does not prove direct involvement of NblA in proteolysis of the core pigment. Therefore, in this study, we used a mutant lacking phycocyanin, the rod pigment of Synechococcus elongatusPCC7942, to examine whether NblA is required for allophycocyanin degradation. We demonstrate that NblA is essential for degradation of the core complex of the phycobilisome. Furthermore, fluorescence lifetime imaging microscopy provided in situ evidence for the interaction of NblA with allophycocyanin, and indicated that NblA interacts with allophycocyanin complexes that are associated with the photosynthetic membranes. Based on these data, as well as previous observations indicating interaction of NblA with phycobilisomes attached to the photosynthetic membranes, we suggest a model for sequential phycobilisome disassembly by NblA.


Subject(s)
Bacterial Proteins/metabolism , Light-Harvesting Protein Complexes/metabolism , Phycocyanin/metabolism , Synechococcus/metabolism , Bacterial Proteins/genetics , Fluorescence Resonance Energy Transfer , Light-Harvesting Protein Complexes/genetics , Mutation , Phycobilisomes/metabolism , Synechococcus/genetics
11.
PLoS One ; 9(6): e100747, 2014.
Article in English | MEDLINE | ID: mdl-24959874

ABSTRACT

Phytoplankton mortality allows effective nutrient cycling, and thus plays a pivotal role in driving biogeochemical cycles. A growing body of literature demonstrates the involvement of regulated death programs in the abrupt collapse of phytoplankton populations, and particularly implicates processes that exhibit characteristics of metazoan programmed cell death. Here, we report that the cell-free, extracellular fluid (conditioned medium) of a collapsing aged culture of the cyanobacterium Synechococcus elongatus is toxic to exponentially growing cells of this cyanobacterium, as well as to a large variety of photosynthetic organisms, but not to eubacteria. The toxic effect, which is light-dependent, involves oxidative stress, as suggested by damage alleviation by antioxidants, and the very high sensitivity of a catalase-mutant to the conditioned medium. At relatively high cell densities, S. elongatus cells survived the deleterious effect of conditioned medium in a process that required de novo protein synthesis. Application of conditioned medium from a collapsing culture caused severe pigment bleaching not only in S. elongatus cells, but also resulted in bleaching of pigments in a cell free extract. The latter observation indicates that the elicited damage is a direct effect that does not require an intact cell, and therefore, is mechanistically different from the metazoan-like programmed cell death described for phytoplankton. We suggest that S. elongatus in aged cultures are triggered to produce a toxic compound, and thus, this process may be envisaged as a novel regulated death program.


Subject(s)
Bacterial Proteins/metabolism , Culture Media, Conditioned/toxicity , Synechococcus/physiology , Antioxidants/pharmacology , Bacteria/drug effects , Photosynthesis , Phytoplankton/drug effects , Synechococcus/metabolism
12.
Plant J ; 79(1): 118-26, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24798071

ABSTRACT

Degradation of the cyanobacterial protein pigment complexes, the phycobilisomes, is a central acclimation response that controls light energy capture. The small protein, NblA, is essential for proteolysis of these large complexes, which may reach a molecular mass of up to 4 MDa. Interactions of NblA in vitro supported the suggestion that NblA is a proteolysis adaptor that labels the pigment proteins for degradation. The mode of operation of NblA in situ, however, remained unresolved. Particularly, it was unclear whether NblA interacts with phycobilisome proteins while part of the large complex, or alternatively interaction with NblA, necessitates dissociation of pigment subunits from the assembly. Fluorescence intensity profiles demonstrated the preferential presence of NblA::GFP (green fluorescent protein) at the photosynthetic membranes, indicating co-localization with phycobilisomes. Furthermore, fluorescence lifetime imaging microscopy provided in situ evidence for interaction of NblA with phycobilisome protein pigments. Additionally, we demonstrated the role of NblA in vivo as a proteolysis tag based on the rapid degradation of the fusion protein NblA::GFP compared with free GFP. Taken together, these observations demonstrated in vivo the role of NblA as a proteolysis adaptor. Additionally, the interaction of NblA with phycobilisomes indicates that the dissociation of protein pigment subunits from the large complex is not a prerequisite for interaction with this adaptor and, furthermore, implicates NblA in the disassembly of the protein pigment complex. Thus, we suggest that, in the case of proteolysis of the phycobilisome, the adaptor serves a dual function: undermining the complex stability and designating the dissociated pigments for degradation.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Phycobiliproteins/metabolism , Phycobilisomes/metabolism , Synechococcus/genetics , Genes, Reporter , Phycobiliproteins/genetics , Protein Transport , Proteolysis , Recombinant Fusion Proteins , Synechococcus/metabolism
13.
Environ Microbiol ; 15(6): 1786-94, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23298171

ABSTRACT

Biofilms are consortia of bacteria that are held together by an extracellular matrix. Cyanobacterial biofilms, which are highly ubiquitous and inhabit diverse niches, are often associated with biological fouling and cause severe economic loss. Information on the molecular mechanisms underlying biofilm formation in cyanobacteria is scarce. We identified a mutant of the cyanobacterium Synechococcus elongatus, which unlike the wild type, developed biofilms. This biofilm-forming phenotype is caused by inactivation of homologues of type II secretion /type IV pilus assembly systems and is associated with impairment of protein secretion. The conditioned medium from a wild-type culture represses biofilm formation by the secretion-mutants. This suggested that the planktonic nature of the wild-type strain is a result of a self-suppression mechanism, which depends on the deposition of a factor to the extracellular milieu. We also identified two genes that are essential for biofilm formation. Transcript levels of these genes are elevated in the mutant compared with the wild type, and are initially decreased in mutant cells cultured in conditioned medium of wild-type cells. The particular niche conditions will determine whether the inhibitor will accumulate to effective levels and thus the described mechanism allows switching to a sessile mode of existence.


Subject(s)
Biofilms , Synechococcus/physiology , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Mutation , Synechococcus/genetics , Synechococcus/metabolism
14.
Environ Microbiol ; 14(3): 680-90, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22026402

ABSTRACT

While tightly regulated, bacterial cell morphology may change substantially in response to environmental cues. Here we describe such changes in the cyanobacterium Synechococcus sp. strain PCC7942. Once maintained in stationary phase, these rod-shaped organisms stop dividing and elongate up to 50-fold. Increase in cell length of a thymidine-auxotroph strain upon thymidine starvation implies that inhibition of DNA replication underlies cell elongation. Elongation occurs under conditions of limiting phosphorus but sufficient nitrogen levels. Once proliferative conditions are restored, elongated cells divide asymmetrically instead of exhibiting the typical fission characterized by mid-cell constriction. The progeny are of length characteristic of exponentially growing cells and are proficient of further proliferation. We propose that the ability to elongate under conditions of cytokinesis arrest together with the rapid induction of cell division upon nutrient repletion represents a beneficial cellular mechanism operating under specific nutritional conditions.


Subject(s)
Cytokinesis/physiology , Nitrogen/metabolism , Phosphorus/metabolism , Synechococcus/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Enlargement , Nitrogen Fixation , Synechococcus/genetics , Synechococcus/metabolism , Water Pollutants, Chemical/metabolism
15.
J Biol Chem ; 283(44): 30330-40, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18718907

ABSTRACT

The enormous macromolecular phycobilisome antenna complex (>4 MDa) in cyanobacteria and red algae undergoes controlled degradation during certain forms of nutrient starvation. The NblA protein (approximately 6 kDa) has been identified as an essential component in this process. We have used structural, biochemical, and genetic methods to obtain molecular details on the mode of action of the NblA protein. We have determined the three-dimensional structure of the NblA protein from both the thermophilic cyanobacterium Thermosynechococcus vulcanus and the mesophilic cyanobacterium Synechococcus elongatus sp. PCC 7942. The NblA monomer has a helix-loop-helix motif which dimerizes into an open, four-helical bundle, identical to the previously determined NblA structure from Anabaena. Previous studies indicated that mutations to NblA residues near the C terminus impaired its binding to phycobilisome proteins in vitro, whereas the only mutation known to affect NblA function in vivo is located near the protein N terminus. We performed random mutagenesis of the S. elongatus nblA gene which enabled the identification of four additional amino acids crucial for NblA function in vivo. This data shows that essential amino acids are not confined to the protein termini. We also show that expression of the Anabaena nblA gene complements phycobilisome degradation in an S. elongatus NblA-null mutant despite the low homology between NblAs of these cyanobacteria. We propose that the NblA interacts with the phycobilisome via "structural mimicry" due to similarity in structural motifs found in all phycobiliproteins. This suggestion leads to a new model for the mode of NblA action which involves the entire NblA protein.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Amino Acid Sequence , Crystallography, X-Ray/methods , DNA Mutational Analysis , Dimerization , Models, Biological , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Synechococcus/metabolism
16.
J Struct Biol ; 158(1): 116-21, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17187990

ABSTRACT

The phycobilisome photosynthetic antenna complex, found in cyanobacteria and red-algae, interacts with proteins expressed specifically to deal with different forms of physiological stress. Under conditions of nutrient starvation, the NblA protein is required for the process that leads to phycobilisome degradation and bleaching of the cells. HspA, a 16.5 kDa heat shock protein expressed in cyanobacterial cells, has been shown to provide functional stability to the phycobilisome during heat stress. We have cloned the genes encoding for these proteins into bacterial expression vectors in order to determine their three-dimensional structures. The resulting recombinant proteins were found to be sparingly soluble, limiting their usefulness in the performance of crystallization experiments. We have developed a novel protocol that utilizes relatively high concentrations of urea to afford sufficient solubility to the protein. This has lead to the successful growth of diffraction quality crystals of these proteins. Complete data sets collected to 2-2.5A from crystals of both proteins shows that the crystals are stable, and useful for structure determination. A preliminary structure of the NblA shows that denaturation has not occurred and specific protein-protein interactions have been preserved. We believe that this protocol may be a generally advantageous method to obtain well diffracting crystals of sparingly soluble proteins.


Subject(s)
Bacterial Proteins/chemistry , Crystallization/methods , Crystallography, X-Ray , Cyanobacteria/metabolism , Heat-Shock Proteins/chemistry , Bacterial Proteins/genetics , Cloning, Molecular , Heat-Shock Proteins/genetics , Phycobilisomes/chemistry , Protein Conformation , Solubility , Urea/chemistry
17.
J Bacteriol ; 188(14): 5258-65, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16816198

ABSTRACT

Degradation of the cyanobacterial light-harvesting antenna, the phycobilisome, is a general acclimation response that is observed under various stress conditions. In this study we identified a novel mutant of Synechococcus elongatus PCC 7942 that exhibits impaired phycobilisome degradation specifically during nitrogen starvation, unlike previously described mutants, which exhibit aberrant degradation under nitrogen, sulfur, and phosphorus starvation conditions. The phenotype of the new mutant, AldOmega, results from inactivation of ald (encoding alanine dehydrogenase). AldOmega is deficient in transcription induction of a number of genes during nitrogen starvation. These genes include the "general nutrient stress-related" genes, nblA and nblC, the products of which are essential for phycobilisome degradation. Furthermore, transcripts of several specific nitrogen-responsive genes accumulate at lower levels in AldOmega than in the wild-type strain. In contrast, ald inactivation did not decrease the accumulation of transcripts during sulfur starvation. Transcription of ald is induced upon nitrogen starvation, which is consistent with the ability of wild-type cells to maintain a low cellular content of alanine under these conditions. Unlike wild-type cells, AldOmega accumulates alanine upon nitrogen starvation. Our analyses suggest that alanine dehydrogenase activity is necessary for an adequate cellular response to nitrogen starvation. Decomposition of alanine may be required to provide a sufficient amount of ammonia. Furthermore, the accumulated alanine, or a related metabolite, may interfere with the cues that modulate acclimation during nitrogen starvation. Taken together, our results provide novel information regarding cellular responses to nitrogen starvation and suggest that mechanisms related to nitrogen-specific responses are involved in modulation of a general acclimation process.


Subject(s)
Alanine Dehydrogenase/metabolism , Phycobilisomes/metabolism , Synechococcus/enzymology , Alanine Dehydrogenase/genetics , Base Sequence , DNA Primers , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Nitrogen/metabolism , Phenotype , Recombinant Proteins/metabolism , Synechococcus/growth & development
18.
Mol Microbiol ; 58(3): 659-68, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16238617

ABSTRACT

Adjustment of photosynthetic light harvesting to ambient conditions is essential to allow efficient energy capturing and to prevent surplus excitation and the cellular damage resulting from it. Degradation of the cyanobacterial light harvesting complex, the phycobilisome, is a general acclimation response occurring under various stress conditions. This study identifies a novel component, NblC, which mediates phycobilisome degradation under nitrogen, sulphur and phosphorus starvation. Our study indicates the requirement of NblC for efficient expression of nblA, an essential component of the degradation pathway; accumulation of nblA transcripts upon nutrient starvation was impaired in the NblC-mutant. Furthermore, expression of NblC under the control of a foreign promoter resulted in accumulation of nblA transcripts and degradation of the light harvesting complex. Transcription of nblC is induced upon nutrient starvation, suggesting the requirement of elevated levels of NblC under these conditions. Importantly, NblC could not exert its positive effect on nblA expression in the absence of the response regulator NblR. Sequence alignment suggests kinase motifs as well as homology of NblC to anti-sigma factors. Accordingly, we suggest a mode of action for this newly identified modulator, which provides new insights into regulation of gene expression in response to environmental stimuli.


Subject(s)
Bacterial Proteins/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Phycobilisomes/metabolism , Pigments, Biological/metabolism , Sulfur/metabolism , Synechococcus/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Promoter Regions, Genetic , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Synechococcus/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...