Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709385

ABSTRACT

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Subject(s)
Cathepsin B , Lysosomes , Pancreatitis , Secretory Vesicles , rab GTP-Binding Proteins , rab7 GTP-Binding Proteins , Animals , Lysosomes/metabolism , Pancreatitis/metabolism , Pancreatitis/pathology , Pancreatitis/genetics , Cathepsin B/metabolism , Cathepsin B/genetics , Mice , Secretory Vesicles/metabolism , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins/metabolism , Acute Disease , Acinar Cells/metabolism , Acinar Cells/pathology , Trypsinogen/metabolism , Trypsinogen/genetics , Ceruletide , Enzyme Precursors/metabolism , Enzyme Precursors/genetics , Mice, Inbred C57BL , Mice, Knockout
2.
Front Immunol ; 14: 1279539, 2023.
Article in English | MEDLINE | ID: mdl-37881430

ABSTRACT

Acute pancreatitis (AP) is one of the most common inflammatory diseases of the gastrointestinal tract and a steady rising diagnosis for inpatient hospitalization. About one in four patients, who experience an episode of AP, will develop chronic pancreatitis (CP) over time. While the initiating causes of pancreatitis can be complex, they consistently elicit an immune response that significantly determines the severity and course of the disease. Overall, AP is associated with a significant mortality rate of 1-5%, which is caused by either an excessive pro-inflammation, or a strong compensatory inhibition of bacterial defense mechanisms which lead to a severe necrotizing form of pancreatitis. At the time-point of hospitalization the already initiated immune response is the only promising common therapeutic target to treat or prevent a severe disease course. However, the complexity of the immune response requires fine-balanced therapeutic intervention which in addition is limited by the fact that a significant proportion of patients is in danger of development or progress to recurrent and chronic disease. Based on the recent literature we survey the disease-relevant immune mechanisms and evaluate appropriate and promising therapeutic targets for the treatment of acute and chronic pancreatitis.


Subject(s)
Pancreatitis, Chronic , Humans , Acute Disease , Pancreatitis, Chronic/therapy , Disease Progression
3.
Sci Rep ; 13(1): 10833, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37402858

ABSTRACT

Acute pancreatitis (AP), which is characterized by self-digestion of the pancreas by its own prematurely activated digestive proteases, is a major reason for hospitalization. The autodigestive process causes necrotic cell death of pancreatic acinar cells and the release of damage associated molecular pattern which activate macrophages and drive the secretion of pro-inflammatory cytokines. The MYD88/IRAK signaling pathway plays an important role for the induction of inflammatory responses. Interleukin-1 receptor associated kinase-3 (IRAK3) is a counter-regulator of this pathway. In this study, we investigated the role of MYD88/IRAK using Irak3-/- mice in two experimental animal models of mild and severe AP. IRAK3 is expressed in macrophages as well as pancreatic acinar cells where it restrains NFκB activation. Deletion of IRAK3 enhanced the migration of CCR2+ monocytes into the pancreas and triggered a pro-inflammatory type 1 immune response characterized by significantly increased serum levels of TNFα, IL-6, and IL-12p70. Unexpectedly, in a mild AP model this enhanced pro-inflammatory response resulted in decreased pancreatic damage, whereas in a severe AP model, induced by partial pancreatic duct ligation, the increased pro-inflammatory response drives a severe systemic inflammatory response syndrome (SIRS) and is associated with an increased local and systemic damage. Our results indicate that complex immune regulation mechanism control the course of AP, where moderate pro-inflammation not necessarily associates with increased disease severity but also drives tissue regenerative processes through a more effective clearance of necrotic acinar cells. Only when the pro-inflammation exceeds a certain systemic level, it fuels SIRS and increases disease severity.


Subject(s)
Pancreatitis , Animals , Mice , Acute Disease , Adaptor Proteins, Signal Transducing/metabolism , Ceruletide/adverse effects , Disease Models, Animal , Inflammation , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Necrosis , Pancreas/metabolism , Pancreatitis/metabolism , Patient Acuity , Signal Transduction , Systemic Inflammatory Response Syndrome
4.
Gut ; 72(7): 1355-1369, 2023 07.
Article in English | MEDLINE | ID: mdl-36631247

ABSTRACT

OBJECTIVE: In acute pancreatitis (AP), bacterial translocation and subsequent infection of pancreatic necrosis are the main risk factors for severe disease and late death. Understanding how immunological host defence mechanisms fail to protect the intestinal barrier is of great importance in reducing the mortality risk of the disease. Here, we studied the role of the Treg/Th17 balance for maintaining the intestinal barrier function in a mouse model of severe AP. DESIGN: AP was induced by partial duct ligation in C57Bl/6 or DEREG mice, in which regulatory T-cells (Treg) were depleted by intraperitoneal injection of diphtheria toxin. By flow cytometry, functional suppression assays and transcriptional profiling we analysed Treg activation and characterised T-cells of the lamina propria as well as intraepithelial lymphocytes (IELs) regarding their activation and differentiation. Microbiota composition was examined in intestinal samples as well as in murine and human pancreatic necrosis by 16S rRNA gene sequencing. RESULTS: The prophylactic Treg-depletion enhanced the proinflammatory response in an experimental mouse model of AP but stabilised the intestinal immunological barrier function of Th17 cells and CD8+/γδTCR+ IELs. Treg depleted animals developed less bacterial translocation to the pancreas. Duodenal overgrowth of the facultative pathogenic taxa Escherichia/Shigella which associates with severe disease and infected necrosis was diminished in Treg depleted animals. CONCLUSION: Tregs play a crucial role in the counterbalance against systemic inflammatory response syndrome. In AP, Treg-activation disturbs the duodenal barrier function and permits translocation of commensal bacteria into pancreatic necrosis. Targeting Tregs in AP may help to ameliorate the disease course.


Subject(s)
Pancreatitis, Acute Necrotizing , T-Lymphocytes, Regulatory , Mice , Humans , Animals , Acute Disease , Bacterial Translocation , RNA, Ribosomal, 16S , Mice, Inbred C57BL
5.
Int J Mol Sci ; 23(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36362379

ABSTRACT

Acute pancreatitis (AP) is a major, globally increasing gastrointestinal disease and a biliary origin is the most common cause. However, the effects of bile acids (BAs), given systemically, on the pancreas and on disease severity remains elusive. In this study, we have investigated the roles of different circulating BAs in animal models for AP to elucidate their impact on disease severity and the underlying pathomechanisms. BAs were incubated on isolated acini and AP was induced through repetitive injections of caerulein or L-arginine; pancreatic duct ligation (PDL); or combined biliopancreatic duct ligation (BPDL). Disease severity was assessed using biochemical and histological parameters. Serum cholecystokinin (CCK) concentrations were determined via enzyme immunoassay. The binding of the CCK1 receptor was measured using fluorescence-labeled CCK. In isolated acini, hydrophobic BAs mitigated the damaging effects of CCK. The same BAs further enhanced pancreatitis in L-arginine- and PDL-based pancreatitis, whereas they ameliorated pancreatic damage in the caerulein and BPDL models. Mechanistically, the binding affinity of the CCK1 receptor was significantly reduced by hydrophobic BAs. The hydrophobicity of BAs and the involvement of CCK seem to be relevant in the course of AP. Systemic BAs may affect the severity of AP by interfering with the CCK1 receptor.


Subject(s)
Pancreatitis , Mice , Animals , Pancreatitis/pathology , Ceruletide/pharmacology , Bile Acids and Salts/metabolism , Acute Disease , Cholecystokinin/metabolism , Disease Models, Animal , Pancreas/metabolism , Arginine/pharmacology , Arginine/metabolism , Hydrophobic and Hydrophilic Interactions
6.
Front Immunol ; 13: 991295, 2022.
Article in English | MEDLINE | ID: mdl-36300116

ABSTRACT

Objective: Acute pancreatitis (AP) is an inflammatory disorder, the severe form of which is burdened with multi-organ dysfunction and high mortality. The pathogenesis of life -threatening organ complications, such as respiratory and renal failure, is unknown. Design: Organ dysfunction was investigated in a mouse model of AP. The influence of monocytes and neutrophils on multi organ dysfunction syndrome (MODS) was investigated in vivo by antibody depletion. Using real-time-fluorescence and deformability-cytometry (RT-DC) analysis we determined the mechanical properties of neutrophils and monocytes during AP. Furthermore, blood samples of pancreatitis patients were used to characterize severity-dependent chemokine profiles according to the revised Atlanta classification. Results: Similar to AP in humans, severe disease in the mouse model associates with organ dysfunction mainly of lung and kidney, which is triggered by a mobilisation of Ly6g-/CD11b+/Ly6c hi monocytes, but not of Ly6g+/CD11b+ neutrophils. Monocyte depletion by anti-CCR2 antibody treatment ameliorated lung function (oxygen consumption) without interfering with the systemic immune response. RT-DC analysis of circulation monocytes showed a significant increase in cell size during SAP, but without a compensatory increase in elasticity. Patient chemokine profiles show a correlation of AP severity with monocyte attracting chemokines like MCP-1 or MIG and with leukocyte mobilisation. Conclusion: In AP, the physical properties of mobilized monocytes, especially their large size, result in an obstruction of the fine capillary systems of the lung and of the kidney glomeruli. A selective depletion of monocytes may represent a treatment strategy for pancreatitis as well as for other inflammation-related disorders.


Subject(s)
Monocytes , Pancreatitis , Mice , Animals , Humans , Multiple Organ Failure/etiology , Multiple Organ Failure/metabolism , Acute Disease , Chemokines/metabolism , Disease Models, Animal
7.
Cancers (Basel) ; 14(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36077614

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC), due to its genomic heterogeneity and lack of effective treatment, despite decades of intensive research, will become the second leading cause of cancer-related deaths by 2030. Step-wise acquisition of mutations, due to genomic instability, is considered to drive the development of PDAC; the KRAS mutation occurs in 95 to 100% of human PDAC, and is already detectable in early premalignant lesions designated as pancreatic intraepithelial neoplasia (PanIN). This mutation is possibly the key event leading to genomic instability and PDAC development. Our study aimed to investigate the role of the error-prone DNA double-strand breaks (DSBs) repair pathway, alt-EJ, in the presence of the KRAS G12D mutation in pancreatic cancer development. Our findings show that oncogenic KRAS contributes to increasing the expression of Polθ, Lig3, and Mre11, key components of alt-EJ in both mouse and human PDAC models. We further confirm increased catalytic activity of alt-EJ in a mouse and human model of PDAC bearing the KRAS G12D mutation. Subsequently, we focused on estimating the impact of alt-EJ inactivation by polymerase theta (Polθ) deletion on pancreatic cancer development, and survival in genetically engineered mouse models (GEMMs) and cancer patients. Here, we show that even though Polθ deficiency does not fully prevent the development of pancreatic cancer, it significantly delays the onset of PanIN formation, prolongs the overall survival of experimental mice, and correlates with the overall survival of pancreatic cancer patients in the TCGA database. Our study clearly demonstrates the role of alt-EJ in the development of PDAC, and alt-EJ may be an attractive therapeutic target for pancreatic cancer patients.

8.
BMC Gastroenterol ; 22(1): 405, 2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36057565

ABSTRACT

BACKGROUND: In acute pancreatitis, secondary infection of pancreatic necrosis is a complication that mostly necessitates interventional therapy. A reliable prediction of infected necrotizing pancreatitis would enable an early identification of patients at risk, which however, is not possible yet. METHODS: This study aims to identify parameters that are useful for the prediction of infected necrosis and to develop a prediction model for early detection. We conducted a retrospective analysis from the hospital information and reimbursement data system and screened 705 patients hospitalized with diagnosis of acute pancreatitis who underwent contrast-enhanced computed tomography and additional diagnostic puncture or drainage of necrotic collections. Both clinical and laboratory parameters were analyzed for an association with a microbiologically confirmed infected pancreatic necrosis. A prediction model was developed using a logistic regression analysis with stepwise inclusion of significant variables. The model quality was tested by receiver operating characteristics analysis and compared to single parameters and APACHE II score. RESULTS: We identified a total of 89 patients with necrotizing pancreatitis, diagnosed by computed tomography, who additionally received biopsy or drainage. Out of these, 59 individuals had an infected necrosis. Eleven parameters showed a significant association with an infection including C-reactive protein, albumin, creatinine, and alcoholic etiology, which were independent variables in a predictive model. This model showed an area under the curve of 0.819, a sensitivity of 0.692 (95%-CI [0.547-0.809]), and a specificity of 0.840 (95%-CI [0.631-0.947]), outperforming single laboratory markers and APACHE II score. Even in cases of missing values predictability was reliable. CONCLUSION: A model consisting of a few single blood parameters and etiology of pancreatitis might help for differentiation between infected and non-infected pancreatic necrosis and assist medical therapy in acute necrotizing pancreatitis.


Subject(s)
Pancreatitis, Acute Necrotizing , Acute Disease , Humans , Necrosis , Pancreatitis, Acute Necrotizing/complications , Pancreatitis, Acute Necrotizing/diagnosis , Pancreatitis, Acute Necrotizing/pathology , Retrospective Studies
9.
Nat Commun ; 13(1): 4502, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922425

ABSTRACT

Chronic pancreatitis (CP) is characterized by chronic inflammation and the progressive fibrotic replacement of exocrine and endocrine pancreatic tissue. We identify Treg cells as central regulators of the fibroinflammatory reaction by a selective depletion of FOXP3-positive cells in a transgenic mouse model (DEREG-mice) of experimental CP. In Treg-depleted DEREG-mice, the induction of CP results in a significantly increased stroma deposition, the development of exocrine insufficiency and significant weight loss starting from day 14 after disease onset. In CP, FOXP3+CD25+ Treg cells suppress the type-2 immune response by a repression of GATA3+ T helper cells (Th2), GATA3+ innate lymphoid cells type 2 (ILC2) and CD206+ M2-macrophages. A suspected pathomechanism behind the fibrotic tissue replacement may involve an observed dysbalance of Activin A expression in macrophages and of its counter regulator follistatin. Our study identified Treg cells as key regulators of the type-2 immune response and of organ remodeling during CP. The Treg/Th2 axis could be a therapeutic target to prevent fibrosis and preserve functional pancreatic tissue.


Subject(s)
Pancreatitis, Chronic , T-Lymphocytes, Regulatory , Animals , Fibrosis , Forkhead Transcription Factors/metabolism , Immunity, Innate , Interleukin-2 Receptor alpha Subunit/immunology , Lymphocytes/metabolism , Mice , Mice, Transgenic , Pancreatitis, Chronic/metabolism
10.
Internist (Berl) ; 62(10): 1034-1043, 2021 Oct.
Article in German | MEDLINE | ID: mdl-34529120

ABSTRACT

Acute pancreatitis is characterized by the autodigestion of the pancreas by its own digestive enzymes. The pathophysiological onset of the disease occurs in the acinar cells. The normally inactive precursors of secreted proteases are prematurely activated and as a result digest the cells from within. The activation of trypsinogen to trypsin represents the key event as active trypsin activates further digestive enzymes and can therefore initiate the activation of the complete protease cascade. This premature activation of proteases results in the cell death of acinar cells and in the induction of a strong proinflammatory immune response. Cells of the innate immune system migrate into the damaged organ and potentiate the local damage again via the release of inflammatory cytokines, such as tumor necrosis factor alpha and reactive oxygen species. Concomitant to the local immune reaction, a systemic activation of the immune system also occurs, which can develop into a systemic inflammatory response syndrome (SIRS). In the course of the SIRS severe complications such as organ failure can occur. The consequence of this pronounced SIRS in the later course of the disease is a strong immunological counter-regulation, the so-called compensatory anti-inflammatory reaction syndrome (CARS). In the course of this immunosuppression commensal bacteria from the intestines can colonize the pancreatic necrosis. The outcome of the SIRS/CARS balance is decisive for the course and the prognosis of the patient.


Subject(s)
Pancreatitis, Acute Necrotizing , Trypsinogen , Acute Disease , Humans , Pancreas , Pancreatitis, Acute Necrotizing/diagnosis
11.
Cells ; 10(7)2021 07 19.
Article in English | MEDLINE | ID: mdl-34359990

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Developing biomarkers for early detection and chemotherapeutic response prediction is crucial to improve the dismal prognosis of PDAC patients. However, molecular cancer signatures based on transcriptome analysis do not reflect intratumoral heterogeneity. To explore a more accurate stratification of PDAC phenotypes in an easily accessible matrix, plasma metabolome analysis using MxP® Global Profiling and MxP® Lipidomics was performed in 361 PDAC patients. We identified three metabolic PDAC subtypes associated with distinct complex lipid patterns. Subtype 1 was associated with reduced ceramide levels and a strong enrichment of triacylglycerols. Subtype 2 demonstrated increased abundance of ceramides, sphingomyelin and other complex sphingolipids, whereas subtype 3 showed decreased levels of sphingolipid metabolites in plasma. Pathway enrichment analysis revealed that sphingolipid-related pathways differ most among subtypes. Weighted correlation network analysis (WGCNA) implied PDAC subtypes differed in their metabolic programs. Interestingly, a reduced expression among related pathway genes in tumor tissue was associated with the lowest survival rate. However, our metabolic PDAC subtypes did not show any correlation to the described molecular PDAC subtypes. Our findings pave the way for further studies investigating sphingolipids metabolisms in PDAC.


Subject(s)
Adenocarcinoma/blood , Carcinoma, Pancreatic Ductal/blood , Metabolome , Metabolomics , Pancreatic Neoplasms/blood , Cohort Studies , Fatty Acids/metabolism , Humans , Lipid Metabolism , Sphingolipids/metabolism , Transcriptome/genetics , Pancreatic Neoplasms
12.
Gastroenterology ; 161(3): 996-1010.e1, 2021 09.
Article in English | MEDLINE | ID: mdl-34097885

ABSTRACT

BACKGROUNDS & AIMS: Fluoropyrimidine c (5-fluorouracil [5FU]) increasingly represents the chemotherapeutic backbone for neoadjuvant, adjuvant, and palliative treatment of pancreatic ductal adenocarcinoma (PDAC). Even in combination with other agents, 5FU efficacy remains transient and limited. One explanation for the inadequate response is insufficient and nonspecific delivery of 5FU to the tumor. METHODS: We designed, generated, and characterized 5FU-incorporated systematic evolution of ligands by exponential enrichment (SELEX)-selected epidermal growth factor receptor (EGFR)-targeted aptamers for tumor-specific delivery of 5FU to PDAC cells and tested their therapeutic efficacy in vitro and in vivo. RESULTS: 5FU-EGFR aptamers reduced proliferation in a concentration-dependent manner in mouse and human pancreatic cancer cell lines. Time-lapsed live imaging showed EGFR-specific uptake of aptamers via clathrin-dependent endocytosis. The 5FU-aptamer treatment was equally effective in 5FU-sensitive and 5FU-refractory PDAC cell lines. Biweekly treatment with 5FU-EGFR aptamers reduced tumor burden in a syngeneic orthotopic transplantation model of PDAC, in an autochthonously growing genetically engineered PDAC model (LSL-KrasG12D/+;LSL-Trp53flox/+;Ptf1a-Cre [KPC]), in an orthotopic cell line-derived xenograft model using human PDAC cells in athymic mice (CDX; Crl:NU-Foxn1nu), and in patient-derived organoids. Tumor growth was significantly attenuated during 5FU-EGFR aptamer treatment in the course of follow-up. CONCLUSIONS: Tumor-specific targeted delivery of 5FU using EGFR aptamers as the carrier achieved high target specificity; overcame 5FU resistance; and proved to be effective in a syngeneic orthotopic transplantation model, in KPC mice, in a CDX model, and in patient-derived organoids and, therefore, represents a promising backbone for pancreatic cancer chemotherapy in patients. Furthermore, our approach has the potential to target virtually any cancer entity sensitive to 5FU treatment by incorporating 5FU into cancer cell-targeting aptamers as the delivery platform.


Subject(s)
Antimetabolites, Antineoplastic/administration & dosage , Aptamers, Nucleotide/administration & dosage , Carcinoma, Pancreatic Ductal/drug therapy , Drug Delivery Systems , ErbB Receptors/metabolism , Fluorouracil/administration & dosage , Pancreatic Neoplasms/drug therapy , Animals , Antimetabolites, Antineoplastic/metabolism , Aptamers, Nucleotide/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Endocytosis , ErbB Receptors/genetics , Female , Fluorouracil/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , Organoids , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , SELEX Aptamer Technique , Tumor Burden/drug effects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
J Cell Mol Med ; 25(14): 6786-6799, 2021 07.
Article in English | MEDLINE | ID: mdl-34132031

ABSTRACT

Uncovering potential new targets involved in pancreatitis may permit the development of new therapies and improvement of patient's outcome. Acute pancreatitis is a primarily sterile disease characterized by a severe systemic inflammatory response associated with extensive necrosis and a mortality rate of up to 24%. Considering that one of the reported disease mechanisms comprises the endoplasmic reticulum (ER) stress response and that the immunoproteasome is a key regulator to prevent proteotoxic stress in an inflammatory context, we investigated its role in acute pancreatitis. In this study, we demonstrate that immunoproteasome deficiency by deletion of the ß5i/LMP7-subunit leads to persistent pancreatic damage. Interestingly, immunoproteasome-deficient mice unveil increased activity of pancreatic enzymes in the acute disease phase as well as higher secretion of Interleukin-6 and transcript expression of the Interleukin IL-1ß, IFN-ß cytokines and the CXCL-10 chemokine. Cell death was increased in immunoproteasome-deficient mice, which appears to be due to the increased accumulation of ubiquitin-protein conjugates and prolonged unfolded protein response. Accordingly, our findings suggest that the immunoproteasome plays a protective role in acute pancreatitis via its role in the clearance of damaged proteins and the balance of ER stress responses in pancreatic acini and in macrophages cytokine production.


Subject(s)
Cysteine Endopeptidases/genetics , Pancreatitis/metabolism , Proteasome Endopeptidase Complex/metabolism , Animals , Cell Death , Cells, Cultured , Chemokine CXCL10/metabolism , Cysteine Endopeptidases/metabolism , Female , Gene Deletion , Interferon-beta/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Pancreas/metabolism , Ubiquitination
14.
Sci Rep ; 11(1): 6677, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758296

ABSTRACT

Gallstone disease affects up to twenty percent of the population in western countries and is a significant contributor to morbidity and health care expenditure. Intestinal microbiota have variously been implicated as either contributing to gallstone formation or to be affected by cholecystectomy. We conducted a large-scale investigation on 404 gallstone carriers, 580 individuals post-cholecystectomy and 984 healthy controls with similar distributions of age, sex, body mass index, smoking habits, and food-frequency-score. All 1968 subjects were recruited from the population-based Study-of-Health-in-Pomerania (SHIP), which includes transabdominal gallbladder ultrasound. Fecal microbiota profiles were determined by 16S rRNA gene sequencing. No significant differences in microbiota composition were detected between gallstone carriers and controls. Individuals post-cholecystectomy exhibited reduced microbiota diversity, a decrease in the potentially beneficial genus Faecalibacterium and an increase in the opportunistic pathogen Escherichia/Shigella. The absence of an association between the gut microbiota and the presence of gallbladder stones suggests that there is no intestinal microbial risk profile increasing the likelihood of gallstone formation. Cholecystectomy, on the other hand, is associated with distinct microbiota changes that have previously been implicated in unfavorable health effects and may not only contribute to gastrointestinal infection but also to the increased colon cancer risk of cholecystectomized patients.


Subject(s)
Asymptomatic Diseases , Cholecystectomy/adverse effects , Dysbiosis/etiology , Gallstones/diagnosis , Gallstones/surgery , Gastrointestinal Microbiome , Aged , Case-Control Studies , Cholecystectomy/methods , Feces/microbiology , Female , Humans , Male , Middle Aged , Ultrasonography
15.
J Cell Mol Med ; 25(10): 4658-4670, 2021 05.
Article in English | MEDLINE | ID: mdl-33682322

ABSTRACT

Mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) are an established risk factor for cystic fibrosis (CF) and chronic pancreatitis. Whereas patients with CF usually develop complete exocrine pancreatic insufficiency, pancreatitis patients with CFTR mutations have mostly preserved exocrine pancreatic function. We therefore used a strain of transgenic mice with significant residual CFTR function (CFTRtm1HGU ) to induce pancreatitis experimentally by serial caerulein injections. Protease activation and necrosis were investigated in isolated acini, disease severity over 24h, pancreatic function by MRI, isolated duct stimulation and faecal chymotrypsin, and leucocyte function by ex vivo lipopolysaccharide (LPS) stimulation. Pancreatic and lung injury were more severe in CFTRtm1HGU but intrapancreatic trypsin and serum enzyme activities higher than in wild-type controls only at 8h, a time interval previously attributed to leucocyte infiltration. CCK-induced trypsin activation and necrosis in acini from CFTRtm1HGU did not differ from controls. Fluid and bicarbonate secretion were greatly impaired, whereas faecal chymotrypsin remained unchanged. LPS stimulation of splenocytes from CFTRtm1HGU resulted in increased INF-γ and IL-6, but decreased IL-10 secretion. CFTR mutations that preserve residual pancreatic function significantly increase the severity of experimental pancreatitis-mostly via impairing duct cell function and a shift towards a pro-inflammatory phenotype, not by rendering acinar cells more susceptible to pathological stimuli.


Subject(s)
Acinar Cells/cytology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/complications , Inflammation/pathology , Mutation , Pancreatic Ducts/pathology , Pancreatitis/pathology , Acinar Cells/metabolism , Animals , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Inflammation/etiology , Inflammation/metabolism , Male , Mice , Mice, Transgenic , Pancreatic Ducts/metabolism , Pancreatitis/etiology , Pancreatitis/metabolism , Severity of Illness Index
16.
Pancreas ; 50(1): 3-11, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33370017

ABSTRACT

ABSTRACT: Acute pancreatitis (AP) is one of the most common gastroenterological disorders leading to hospitalization. It has long been debated whether biliary AP, about 30% to 50% of all cases, is induced by bile acids (BAs) when they reach the pancreas via reflux or via the systemic blood circulation.Besides their classical function in digestion, BAs have become an attractive research target because of their recently discovered property as signaling molecules. The underlying mechanisms of BAs have been investigated in various studies. Bile acids are internalized into acinar cells through specific G-protein-coupled BA receptor 1 and various transporters. They can further act via different receptors: the farnesoid X, ryanodine, and inositol triphosphate receptor. Bile acids induce a sustained Ca2+ influx from the endoplasmic reticulum and release of Ca2+ from acidic stores into the cytosol of acinar cells. The overload of intracellular Ca2+ results in mitochondrial depolarization and subsequent acinar cell necrosis. In addition, BAs have a biphasic effect on pancreatic ductal cells. A more detailed characterization of the mechanisms through which BAs contribute to the disease pathogenesis and severity will greatly improve our understanding of the underlying pathophysiology and may allow for the development of therapeutic and preventive strategies for gallstone-inducedAP.


Subject(s)
Bile Acids and Salts/metabolism , Pancreas/metabolism , Pancreatitis/metabolism , Signal Transduction , Animals , Calcium/metabolism , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Humans , Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Necrosis , Pancreas/pathology , Pancreatitis/pathology
17.
Gut ; 70(3): 522-530, 2021 03.
Article in English | MEDLINE | ID: mdl-33168600

ABSTRACT

OBJECTIVE: The intestinal microbiome affects the prevalence and pathophysiology of a variety of diseases ranging from inflammation to cancer. A reduced taxonomic or functional diversity of the microbiome was often observed in association with poorer health outcomes or disease in general. Conversely, factors or manifest diseases that determine the long-term stability or instability of the microbiome are largely unknown. We aimed to identify disease-relevant phenotypes associated with faecal microbiota (in-)stability. DESIGN: A total of 2564 paired faecal samples from 1282 participants of the population-based Study of Health in Pomerania (SHIP) were collected at a 5-year (median) interval and microbiota profiles determined by 16S rRNA gene sequencing. The changes in faecal microbiota over time were associated with highly standardised and comprehensive phenotypic data to determine factors related to microbiota (in-)stability. RESULTS: The overall microbiome landscape remained remarkably stable over time. The greatest microbiome instability was associated with factors contributing to metabolic syndrome such as fatty liver disease and diabetes mellitus. These, in turn, were associated with an increase in facultative pathogens such as Enterobacteriaceae or Escherichia/Shigella. Greatest stability of the microbiome was determined by higher initial alpha diversity, female sex, high household income and preserved exocrine pancreatic function. Participants who newly developed fatty liver disease or diabetes during the 5-year follow-up already displayed significant microbiota changes at study entry when the diseases were absent. CONCLUSION: This study identifies distinct components of metabolic liver disease to be associated with instability of the intestinal microbiome, increased abundance of facultative pathogens and thus greater susceptibility toward dysbiosis-associated diseases.


Subject(s)
Diabetes Mellitus/metabolism , Dysbiosis/complications , Exocrine Pancreatic Insufficiency/physiopathology , Gastrointestinal Microbiome , Liver Diseases/metabolism , Adult , Aged , Biodiversity , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Germany , Humans , Income/statistics & numerical data , Longitudinal Studies , Male , Middle Aged , Phenotype , RNA, Ribosomal, 16S/analysis , Risk Factors , Sex Factors
18.
Pancreatology ; 20(8): 1637-1647, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33097430

ABSTRACT

BACKGROUND: Acute pancreatitis is a gastrointestinal disorder of high incidence resulting in life threatening complications in up to 20% of patients. Its severe form is characterized by an extensive and systemic immune response. We investigated the role of the adaptive immune response in two experimental models of pancreatitis. METHODS: In C57BI/6-mice mild pancreatitis was induced by 8-hourly injections of caerulein and severe pancreatitis by additional, partial pancreatic duct ligation. T-cell-activation was determined by flow-cytometry of CD25/CD69, T-cell-differentiation by nuclear staining of the transcription-factors Tbet, Gata3 and Foxp3. In vivo CD4+ T-cells were depleted using anti-CD4 antibody. Disease severity was determined by histology, serum amylase and lipase activities, lung MPO and serum cytokine levels (IL-6, TNFα, IL-10). RESULTS: In both models T-cells were activated. Th1-differentiation (Tbet) was absent during pancreatitis but we detected a pronounced Th2/Treg (Gata3/Foxp3) response which paralleled disease severity in both models. The complete depletion of CD4+ T-cells via anti-CD4 antibody, surprisingly, reduced disease severity significantly, as well as granulocyte infiltration and pro- and anti-inflammatory cytokine levels. Co-incubation of acini and T-cells did not lead to T-cell-activation by acinar cells but to acinar damage by T-cells. During pancreatitis no significant T-cell-infiltration into the pancreas was observed. CONCLUSION: T cells orchestrate the early local as well as the systemic immune responses in pancreatitis and are directly involved in organ damage. The Th2 response appears to increase disease severity, rather than conferring an immunological protection.


Subject(s)
Adaptive Immunity , Cell Differentiation , Pancreatitis , T-Lymphocytes, Regulatory , Th2 Cells , Animals , Cytokines , Disease Models, Animal , Lymphocyte Activation , Mice , Pancreatitis/immunology
19.
Clin Transl Gastroenterol ; 11(9): e00232, 2020 09.
Article in English | MEDLINE | ID: mdl-33094959

ABSTRACT

INTRODUCTION: Exocrine pancreatic function is a critical host factor in determining the intestinal microbiota composition. Diseases affecting the exocrine pancreas could therefore influence the gut microbiome. We investigated the changes in gut microbiota of patients with chronic pancreatitis (CP). METHODS: Patients with clinical and imaging evidence of CP (n = 51) were prospectively recruited and compared with twice the number of nonpancreatic disease controls matched for distribution in age, sex, body mass index, smoking, diabetes mellitus, and exocrine pancreatic function (stool elastase). From stool samples of these 153 subjects, DNA was extracted, and intestinal microbiota composition was determined by bacterial 16S ribosomal RNA gene sequencing. RESULTS: Patients with CP exhibited severely reduced microbial diversity (Shannon diversity index and Simpson diversity number, P < 0.001) with an increased abundance of facultative pathogenic organisms (P < 0.001) such as Enterococcus (q < 0.001), Streptococcus (q < 0.001), and Escherichia.Shigella (q = 0.002). The CP-associated changes were independent of exocrine pancreatic insufficiency. Short-chain fatty acid producers, considered protective for epithelia such as Faecalibacterium (q < 0.001), showed reduced abundance in patients with CP. Of 4 additional patients with CP previously treated with antibiotics (ceftriaxone and metronidazole), 3 patients were characterized by distinct Enterococcus overgrowth. DISCUSSION: CP is associated with marked gut microbiota dysbiosis, greatly reduced diversity, and increased abundance of opportunistic pathogens, specifically those previously isolated from infected pancreatic necrosis. Taxa with a potentially beneficial role in intestinal barrier function are depleted. These changes can increase the probability of complications from pancreatitis such as infected fluid collections or small intestinal bacterial overgrowth (see Graphical Abstract, Supplementary Digital Content 1, http://links.lww.com/CTG/A383).


Subject(s)
Dysbiosis/diagnosis , Exocrine Pancreatic Insufficiency/microbiology , Gastrointestinal Microbiome/physiology , Pancreatitis, Chronic/complications , Adult , Aged , DNA, Bacterial/isolation & purification , Dysbiosis/microbiology , Enterococcus/genetics , Enterococcus/isolation & purification , Escherichia/genetics , Escherichia/isolation & purification , Exocrine Pancreatic Insufficiency/physiopathology , Faecalibacterium/genetics , Faecalibacterium/isolation & purification , Feces/microbiology , Female , Humans , Intestinal Mucosa/microbiology , Male , Middle Aged , Pancreatitis, Chronic/microbiology , Prospective Studies , RNA, Ribosomal, 16S/genetics , Shigella/genetics , Shigella/isolation & purification , Streptococcus/genetics , Streptococcus/isolation & purification
20.
Pancreatology ; 20(7): 1262-1267, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32859544

ABSTRACT

BACKGROUND: The G-protein-coupled receptor Class C Group 6 Member A (GPRC6A) is activated by multiple ligands and is important for the regulation of calcium homeostasis. Extracellular calcium is capable to increase NLRP3 inflammasome activity of the innate immune system and deletion of this proinflammatory pathway mitigated pancreatitis severity in vivo. As such this pathway and the GPRC6A receptor is a reasonable candidate gene for pancreatitis. Here we investigated the prevalence of sequence variants in the GPRC6A locus in different pancreatitis aetiologies. METHODS: We selected 6 tagging SNPs with the SNPinfo LD TAG SNP Selection tool and the functional relevant SNP rs6907580 for genotyping. Cohorts from Germany, further European countries and China with up to 1,124 patients and 1,999 controls were screened for single SNPs with melting curve analysis. RESULTS: We identified an association of rs1606365(G) with alcoholic chronic pancreatitis in a German (odds ratio (OR) 0.76, 95% confidence interval (CI) 0.65-0.89, p = 8 × 10-5) and a Chinese cohort (OR 0.78, 95% CI 0.64-0.96, p = 0.02). However, this association was not replicated in a combined cohort of European patients (OR 1.18, 95% CI 0.99-1.41, p = 0.07). Finally, no association was found with acute and non-alcoholic chronic pancreatitis. CONCLUSIONS: Our results support a potential role of calcium sensing receptors and inflammasome activation in alcoholic chronic pancreatitis development. As the functional consequence of the associated variant is unclear, further investigations might elucidate the relevant mechanisms.


Subject(s)
Pancreatitis/genetics , Receptors, G-Protein-Coupled/genetics , Adult , Aged , Asian People , DNA/genetics , Europe , Female , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , Male , Middle Aged , Pancreatitis, Alcoholic/genetics , Polymorphism, Single Nucleotide , Receptors, Calcium-Sensing/genetics , Risk Factors , Signal Transduction/genetics , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...