Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 198(3): 721-731, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35292859

ABSTRACT

While network analyses have stimulated a renewed interest in understanding patterns and drivers of specialization within communities, few studies have explored specialization within populations. Thus, in plant populations, causes and consequences of individual variation in their interactions with mutualistic animals remain poorly understood. Studying a Brazilian pepper (Schinus terebinthifolia) population, we measured the extent of individual variation in interactions with seed dispersers and tested whether connectivity (number of seed dispersers) and specialization (exclusiveness of partners) are associated with phenotypic and phenological traits of individuals and their spatial context. We found that: (i) individuals varied broadly in their connectivity and specialization on seed dispersers; (ii) phenotypic traits and spatial context matter more than fruiting duration in determining how many and how exclusive are seed dispersers of an individual; (iii) the individual-based network was nested and indicated that the less connected individuals were shorter, occurred in neighborhoods with fewer fruits, and tended to interact with a subset of the partners of more generalist individuals which, in turn, were taller and inserted in higher fruit density neighborhoods; (iv) modularity indicated the existence of subsets of individuals that interacted disproportionately with distinct groups of partners, which may occur due to differences in bird habitat use across the landscape. Our study underlines a remarkable interindividual variation that is overlooked when interactions are compiled to describe species-level interactions. Traits and spatial contexts that define variation among individuals may have important implications not only for fitness but also for sampling and description of interactions at species level.


Subject(s)
Plants , Trees , Animals , Birds , Ecosystem , Seeds
2.
Environ Entomol ; 47(5): 1165-1172, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30007344

ABSTRACT

Sit-and-wait predators use different strategies to encounter potential prey. Rhinoleucophenga myrmecophaga Vidal et (Vidal et Vilela; Diptera: Drosophilidae) larvae build sticky shelters on top of extrafloral nectaries (EFNs) of Qualea grandiflora Mart (Vochysiaceae), a common plant in the Brazilian cerrado savanna. Although larval shelters block the EFNs, nectar production is not obstructed and is used by the larvae to attract and trap nectar-gathering ants that are eventually eaten by the dipteran. Here we describe the natural history of R. myrmecophaga, its infestation pattern in Q. grandiflora, the ant assemblage at EFNs, and the insects used as prey. We use stable isotope composition (δ13C and δ15N) of R. myrmecophaga and potential food sources to infer its diet, and perform chemical analyses of the droplets found at shelter openings to determine whether nectar is used as a prey attractant. We found that Rhinoleucophenga larvae occur on the majority of Qualea plants and occupy active EFNs mainly in the rainy season. The two most frequent visiting species were also the most common insects found trapped at larval shelters. The stable isotope analyses confirmed that ants are the main food sources of R. myrmecophaga. Chemical analyses and field observations revealed that Rhinoleucophenga larvae use extrafloral nectar to attract prey to their shelters by pushing this liquid to the shelter opening where it forms a droplet. This is a rare case of sit-and-wait predator exploiting an ant-plant mutualism through the use of the very food reward produced by the plant to attract and capture potential ant mutualists.


Subject(s)
Ants , Drosophilidae , Magnoliopsida , Plant Nectar , Predatory Behavior , Animals , Female , Food Chain , Larva , Oviposition
3.
Ecology ; 97(7): 1650-1657, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27859165

ABSTRACT

An open question in the evolutionary ecology of ant-plant facultative mutualism is how other members of the associated community can affect the interaction to a point where reciprocal benefits are disrupted. While visiting Qualea grandiflora shrubs to collect sugary rewards at extrafloral nectaries, tropical savanna ants deter herbivores and reduce leaf damage. Here we show that larvae of the fly Rhinoleucophenga myrmecophaga, which develop on extrafloral nectaries, lure potentially mutualistic, nectar-feeding ants and prey on them. Foraging ants spend less time on fly-infested foliage. Field experiments showed that predation (or the threat of predation) on ants by fly larvae produces cascading effects through three trophic levels, resulting in fewer protective ants on leaves, increased numbers of chewing herbivores, and greater leaf damage. These results reveal an undocumented mode of mutualism exploitation by an opportunistic predator at a plant-provided food source, jeopardizing ant-derived protection services to the plant. Our study documents a rather unusual case of predation of adult ants by a dipteran species and demonstrates a top-down trophic cascade within a generalized ant-plant mutualism.


Subject(s)
Ants/physiology , Drosophilidae/physiology , Symbiosis , Animals , Larva , Plants
4.
PLoS One ; 11(7): e0158283, 2016.
Article in English | MEDLINE | ID: mdl-27438722

ABSTRACT

Plants bearing extrafloral nectaries (EFNs) are common in the Brazilian cerrado savanna, where climatic conditions having marked seasonality influence arboreal ant fauna organization. These ant-plant interactions have rarely been studied at community level. Here, we tested whether: 1) EFN-bearing plants are more visited by ants than EFN-lacking plants; 2) ant visitation is higher in the rainy season than in dry season; 3) plants producing young leaves are more visited than those lacking young leaves in the rainy season; 4) during the dry season, plants with old leaves and flowers are more visited than plants with young leaves and bare of leaves or flowers; 5) the composition of visiting ant fauna differs between plants with and without EFNs. Field work was done in a cerrado reserve near Uberlândia, MG State, Brazil, along ten transects (total area 3,000 m2), in the rainy (October-January) and dry seasons (April-July) of 2010-2011. Plants (72 species; 762 individuals) were checked three times per season for ant presence. Results showed that 21 species (29%) and 266 individuals (35%) possessed EFNs. These plants attracted 38 ant species (36 in rainy, 26 in dry season). In the rainy season, plants with EFNs had higher ant abundance/richness than plants without EFNs, but in the dry season, EFN presence did not influence ant visitation. Plant phenology affected ant richness and abundance in different ways: plants with young leaves possessed higher ant richness in the rainy season, but in the dry season ant abundance was higher on plants possessing old leaves or flowers. The species composition of plant-associated ant communities, however, did not differ between plants with and without EFNs in either season. These findings suggest that the effect of EFN presence on a community of plant-visiting ants is context dependent, being conditioned to seasonal variation.


Subject(s)
Ants/physiology , Ecosystem , Herbivory/physiology , Plant Nectar/chemistry , Animals , Brazil , Flowers/chemistry , Grassland , Insecta/physiology , Plant Leaves/chemistry , Seasons , Symbiosis/physiology
5.
J Anim Ecol ; 84(2): 442-52, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25251455

ABSTRACT

Ant foraging on foliage can substantially affect how phytophagous insects use host plants and represents a high predation risk for caterpillars, which are important folivores. Ant-plant-herbivore interactions are especially pervasive in cerrado savanna due to continuous ant visitation to liquid food sources on foliage (extrafloral nectaries, insect honeydew). While searching for liquid rewards on plants, aggressive ants frequently attack or kill insect herbivores, decreasing their numbers. Because ants vary in diet and aggressiveness, their effect on herbivores also varies. Additionally, the differential occurrence of ant attractants (plant and insect exudates) on foliage produces variable levels of ant foraging within local floras and among localities. Here, we investigate how variation of ant communities and of traits among host plant species (presence or absence of ant attractants) can change the effect of carnivores (predatory ants) on herbivore communities (caterpillars) in a cerrado savanna landscape. We sampled caterpillars and foliage-foraging ants in four cerrado localities (70-460 km apart). We found that: (i) caterpillar infestation was negatively related with ant visitation to plants; (ii) this relationship depended on local ant abundance and species composition, and on local preference by ants for plants with liquid attractants; (iii) this was not related to local plant richness or plant size; (iv) the relationship between the presence of ant attractants and caterpillar abundance varied among sites from negative to neutral; and (v) caterpillars feeding on plants with ant attractants are more resistant to ant predation than those feeding on plants lacking attractants. Liquid food on foliage mediates host plant quality for lepidopterans by promoting generalized ant-caterpillar antagonism. Our study in cerrado shows that the negative effects of generalist predatory ants on herbivores are detectable at a community level, affecting patterns of abundance and host plant use by lepidopterans. The magnitude of ant-induced effects on caterpillar occurrence across the cerrado landscape may depend on how ants use plants locally and how they respond to liquid food on plants at different habitats. This study enhances the relevance of plant-ant and ant-herbivore interactions in cerrado and highlights the importance of a tritrophic perspective in this ant-rich environment.


Subject(s)
Ants/physiology , Ecosystem , Lepidoptera/physiology , Predatory Behavior/physiology , Animals , Brazil , Grassland , Hemiptera/physiology , Herbivory , Larva/physiology , Lepidoptera/growth & development , Plant Physiological Phenomena , Plants/parasitology
6.
PLoS One ; 9(2): e90369, 2014.
Article in English | MEDLINE | ID: mdl-24587341

ABSTRACT

Ants frequently interact with fleshy fruits on the ground of tropical forests. This interaction is regarded as mutualistic because seeds benefit from enhanced germination and dispersal to nutrient-rich microsites, whereas ants benefit from consuming the nutritious pulp/aril. Considering that the process of deforestation affects many attributes of the ecosystem such as species abundance and composition, and interspecific interactions, we asked whether the interaction between ants and fallen fleshy fruits in the Brazilian Atlantic forest differs between human-created fragments and undisturbed forests. We controlled diaspore type and quantity by using synthetic fruits (a plastic 'seed' covered by a lipid-rich 'pulp'), which were comparable to lipid-rich fruits. Eight independent areas (four undisturbed forests, and four disturbed forest fragments) were used in the field experiment, in which we recorded the attracted ant species, ant behaviour, and fruit removal distance. Fruits in undisturbed forest sites attracted a higher number of species than those in disturbed forests. Moreover, the occurrence of large, fruit-carrying ponerine ants (Pachycondyla, Odontomachus; 1.1 to 1.4 cm) was higher in undisturbed forests. Large species (≥3 mm) of Pheidole (Myrmicinae), also able to remove fruits, did not differ between forest types. Following these changes in species occurrence, fruit displacement was more frequent in undisturbed than in disturbed forests. Moreover, displacement distances were also greater in the undisturbed forests. Our data suggest that fallen fleshy fruits interacting with ants face different fates depending on the conservation status of the forest. Together with the severe loss of their primary dispersers in human-disturbed tropical forest sites, vertebrate-dispersed fruits may also be deprived of potential ant-derived benefits in these habitats due to shifts in the composition of interacting ant species. Our data illustrate the use of synthetic fruits to better understand the ecology of ant-fruit interactions in variable ecological settings, including human-disturbed landscapes.


Subject(s)
Ants/physiology , Biomimetics , Conservation of Natural Resources , Fruit , Rain , Trees/physiology , Animals , Atlantic Ocean , Brazil
7.
Am Nat ; 174(1): 134-40, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19456265

ABSTRACT

Information about predation risks is critical for herbivorous insects, and natural selection favors their ability to detect predators before oviposition and to select enemy-free foliage when offspring mortality risk is high. Food plants are selected by ovipositing butterflies, and offspring survival frequently varies among plants because of variation in the presence of predators. Eunica bechina butterflies oviposit on Caryocar brasiliense, an ant-defended plant. Experiments with dried Camponotus and Cephalotes ants pinned to leaves revealed that butterflies use ant size and form as visual cues to avoid ovipositing on plant parts occupied by ants more likely to kill larval offspring. Presence of sap-sucking bugs did not affect butterfly oviposition. This is the first demonstration that visual recognition of predators can mediate egg-laying decisions by an insect herbivore and that an insect will discriminate among different species of potential predators. This unusual behavioral capability permits specialization on a risky, ant-defended food plant.


Subject(s)
Ants , Butterflies/physiology , Ecosystem , Oviposition , Animals , Brazil , Female , Larva , Plants , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...