Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 9(10)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36290526

ABSTRACT

Keratinocytes undergo a complex process of differentiation to form the stratified stratum corneum layer of the skin. In most biomimetic skin models, a 3D hydrogel fabricated out of collagen type I is used to mimic human skin. However, native skin also contains keratin, which makes up 90% of the epidermis and is produced by the keratinocytes present. We hypothesized that the addition of keratin (KTN) in our collagen hydrogel may aid in the process of keratinocyte differentiation compared to a pure collagen hydrogel. Keratinocytes were seeded on top of a 100% collagen or 50/50 C/KTN hydrogel cultured in either calcium-free (Ca-free) or calcium+ (Ca+) media. Our study demonstrates that the addition of keratin and calcium in the media increased lysosomal activity by measuring the glucocerebrosidase (GBA) activity and lysosomal distribution length, an indication of greater keratinocyte differentiation. We also found that the presence of KTN in the hydrogel also increased the expression of involucrin, a differentiation marker, compared to a pure collagen hydrogel. We demonstrate that a combination (i.e., containing both collagen and kerateine or "C/KTN") hydrogel was able to increase keratinocyte differentiation compared to a pure collagen hydrogel, and the addition of calcium further increased the differentiation of keratinocytes. This multi-protein hydrogel shows promise in future models or treatments to increase keratinocyte differentiation into the stratum corneum.

2.
Int J Hyperthermia ; 38(1): 830-845, 2021.
Article in English | MEDLINE | ID: mdl-34058945

ABSTRACT

Objective: To determine whether the addition of kerateine (reduced keratin) in rat tail collagen type I hydrogels increases thermal stability and changes material properties and supports cell growth for use in cellular hyperthermia studies for tumor treatment.Methods: Collagen type I extracted from rat tail tendon was combined with kerateine extracted from human hair fibers. Thermal, mechanical, and biocompatibility properties and cell behavior was assessed and compared to 100% collagen type I hydrogels to demonstrate their utility as a tissue model for 3D in vitro testing.Results: A combination (i.e., containing both collagen 'C/KNT') hydrogel was more thermally stable than pure collagen hydrogels and resisted thermal degradation when incubated at a hyperthermic temperature of 47°C for heating durations up to 60 min with a higher melting temperature measured by DSC. An increase in the storage modulus was only observed with an increased collagen concentration rather than an increased KTN concentration; however, a change in ECM structure was observed with greater fiber alignment and width with an increase in KTN concentration. The C/KTN hydrogels, specifically 50/50 C/KTN hydrogels, also supported the growth and of fibroblasts and MDA-MB-231 breast cancer cells similar to those seeded in 100% collagen hydrogels.Conclusion: This multi-protein C/KTN hydrogel shows promise for future studies involving thermal stress studies without compromising the 3D ECM environment or cell growth.


Subject(s)
Extracellular Matrix , Hydrogels , Animals , Cell Proliferation , Collagen , Rats
3.
Colloids Surf B Biointerfaces ; 154: 270-278, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28351799

ABSTRACT

Immobilized enzymes enable advances in bioprocessing efficiency and bioactive packaging. Enzyme immobilization onto macroscale solid supports is often limited by low protein loading, inadequate access to substrate, and non-ideal orientation to the solid support; immobilization on nanomaterials has improved activity retention, protein loading, and enabled improved performance in extreme environments, yet has practical limitations including handling, recovery. This work describes the immobilization of chymotrypsin to nylon 6,6 in two formats: electrospun nanofibers and planar films. Protein loading, enzyme activity, and kinetics were compared to that of commercially available systems (free chymotrypsin and chymotrypsin immobilized on agarose beads). Electrospun nylon 6,6 nanofibers had an average fiber diameter of 161±73nm, improving protein loading compared to its planar macroscale counterpart. Chymotrypsin immobilized onto nylon nanofibers exhibited shifts in both working optimum pH and temperature with an increase from pH 7.8 to pH 9, and increased optimum temperature by 10°C compared to free enzyme. The nanofibers also enhanced thermostability compared to native enzyme, enzyme on planar films, and the commercial standard agarose beads with 35% activity retained after 12h at 50°C. This work demonstrates the potential of hierarchical nanomaterials in improving enzyme performance, leveraging benefits of both nano and macroscale supports.


Subject(s)
Chymotrypsin/chemistry , Enzymes, Immobilized/chemistry , Nanofibers/chemistry , Nylons/chemistry , Animals , Cattle , Electrochemical Techniques , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Microspheres , Nanofibers/ultrastructure , Sepharose/chemistry , Temperature
4.
Nanotechnology ; 27(48): 485102, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27819799

ABSTRACT

Bacteriophages are viruses capable of infecting and lysing target bacterial cells; as such they have potential applications in agriculture for decontamination of foods, food contact surfaces and food rinse water. Although bacteriophages can retain infectivity long-term using lyophilized storage, the process of freeze-drying can be time consuming and expensive. In this study, electrospinning was used for dehydrating bacteriophages in polyvinylpyrrolidone polymer solutions with addition of excipients (sodium chloride, magnesium sulfate, Tris-HCl, sucrose) in deionized water. The high voltage dehydration reduced the infectivity of bacteriophages following electrospinning, with the damaging effect abated with addition of storage media (SM) buffer and sucrose. SM buffer and sucrose also provided the most protection over extended storage (8 weeks; 20 °C; 1% relative humidity) by mitigating environmental effects on the dried bacteriophages. Magnesium sulfate however provided the least protection due to coagulation effects of the ion, which can disrupt the native conformation of the bacteriophage protein coat. Storage temperatures (20 °C, 4 °C and -20 °C; 1% relative humidity) had a minimal effect while relative humidity had substantial effect on the infectivity of bacteriophages. Nanofibers stored in higher relative humidity (33% and 75%) underwent considerable damage due to extensive water absorption and disruption of the fibers. Overall, following storage of nanofiber mats for eight weeks at ambient temperatures, high infective phage concentrations (106-107 PFU ml-1) were retained. Therefore, this study provided valuable insights on preservation and dehydration of bacteriophages by electrospinning in comparison to freeze drying and liquid storage, and the influence of excipients on the viability of bacteriophages.

5.
ACS Appl Mater Interfaces ; 6(9): 6664-71, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24730392

ABSTRACT

Zwitterionic sulfobetaine polymers with a catechol chain end (DOPA-PSB) were applied to a variety of hydrophobic polymer sheets and fibers. In addition, a silica surface was tested as a representative hydrophilic substrate. The polymer-coated surfaces showed significantly lower fouling levels than uncoated controls. Because of the anti-polyelectrolyte nature of sulfobetaine zwitterionic polymers, the effect of salt concentration on the coating solutions and the quality of the polymer coating against fouling are studied. The coating method involves only water-based solutions, which is compatible with most surfaces and is environmentally friendly. To demonstrate the versatility of the reported method, we evaluated the fouling levels of the polymer coating on commonly used polymeric surfaces such as polypropylene (PP), polydimethylsiloxane (PDMS), polystyrene (PS), nylon, polyvinyl chloride (PVC), and poly(methyl methacrylate) (PMMA).

6.
Adv Mater Interfaces ; 1(6)2014 Sep.
Article in English | MEDLINE | ID: mdl-29094002

ABSTRACT

It is highly desirable to develop a universal nonfouling coating via a simple one-step dip-coating method. Developing such a universal coating method for a hydrophilic polymer onto a variety of surfaces with hydrophobic and hydrophilic properties is very challenging. This work demonstrates a versatile and simple method to attach zwitterionic poly(carboxybetaine methacrylate) (PCB), one of the most hydrophilic polymers, onto both hydrophobic and hydrophilic surfaces to render them nonfouling. This is achieved by the coating of a catechol chain end carboxybetaine methacrylate polymer (DOPA-PCB) assisted by dopamine. The coating process was carried out in water. Water miscible solvents such as methanol and tetrahydrofuran (THF) are added to the coatings if surface wettability is an issue, as for certain hydrophobic surfaces. This versatile coating method was applied to several types of surfaces such as polypropylene (PP), polydimethyl siloxane (PDMS), Teflon, polystyrene (PS), polymethylmethacrylate (PMMA), polyvinyl chloride (PVC) and also on metal oxides such as silicon dioxide.

7.
Biosensors (Basel) ; 3(3): 286-96, 2013 Jul 29.
Article in English | MEDLINE | ID: mdl-25586259

ABSTRACT

Investigations were conducted to develop an electrotextile using a nonwoven polypropylene fiber platform conformally coated in a conductive, functionalized copolymer of polypyrrole and 3-thiopheneacetic acid (3TAA). The objectives of this study were to determine: (1) if the inclusion of 3TAA in the polymerization process would have an effect on the availability of binding sites in the high-surface area electrotextile for biorecognition elements and (2) how the increase in the concentration of 3TAA would affect the physical characteristics of the coating, resistivity of the sample and availability of binding sites. It was found that the addition of 3TAA to the polymerization process resulted in an increase in the size of the polypyrrole coating, as well as the material resistivity and available binding sites for biorecognition elements. These factors were used to determine which of the tested concentrations was best for biosensor development. A polymer coated membrane sample containing a concentration within the range of 10-50 mg/mL of 3TAA was selected as the best for future biosensor work.

8.
Biosensors (Basel) ; 2(4): 465-78, 2012 Nov 29.
Article in English | MEDLINE | ID: mdl-25586036

ABSTRACT

An electrotextile with a biosensing focus composed of conductive polymer coated microfibers that contain functional attachment sites for biorecognition elements was developed. Experiments were conducted to select a compound with a pendant functional group for inclusion in the polymer, a fiber platform, and polymerization solvent. The effects of dopant inclusion and post-polymerization wash steps were also analyzed. Finally, the successful attachment of avidin, which was then used to capture biotin, to the electrotextile was achieved. The initial results show a nonwoven fiber matrix can be successfully coated in a conductive, functionalized polymer while still maintaining surface area and fiber durability. A polypropylene fiber platform with a conductive polypyrrole coating using iron (III) chloride as an oxidant, water as a solvent, and 5-sulfosalicylic acid as a dopant exhibited the best coating consistency, material durability, and lowest resistance. Biological attachment of avidin was achieved on the fibers through the inclusion of a carboxyl functional group via 3-thiopheneacetic acid in the monomer. The immobilized avidin was then successfully used to capture biotin. This was confirmed through the use of fluorescent quantum dots and confocal microscopy. A preliminary electrochemical experiment using avidin for biotin detection was conducted. This technology will be extremely useful in the formation of electrotextiles for use in biosensor systems.

9.
J Nanobiotechnology ; 9: 48, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-22024374

ABSTRACT

BACKGROUND: The quantification of surface groups attached to non-woven fibers is an important step in developing nanofiber biosensing detection technologies. A method utilizing biotin functionalized quantum dots (QDs) 655 for quantitative analysis of available biotin binding sites within avidin immobilized on electrospun nanofiber membranes was developed. RESULTS: A method for quantifying nanofiber bound avidin using biotin functionalized QDs is presented. Avidin was covalently bound to electrospun fibrous polyvinyl chloride (PVC 1.8% COOH w/w containing 10% w/w carbon black) membranes using primary amine reactive EDC-Sulfo NHS linkage chemistry. After a 12 h exposure of the avidin coated membranes to the biotin-QD complex, fluorescence intensity was measured and the total amount of attached QDs was determined from a standard curve of QD in solution (total fluorescence vs. femtomole of QD 655). Additionally, fluorescence confocal microscopy verified the labeling of avidin coated nanofibers with QDs. The developed method was tested against 2.4, 5.2, 7.3 and 13.7 mg spray weights of electrospun nanofiber mats. Of the spray weight samples tested, maximum fluorescence was measured for a weight of 7.3 mg, not at the highest weight of 13.7 mg. The data of total fluorescence from QDs bound to immobilized avidin on increasing weights of nanofiber membrane was best fit with a second order polynomial equation (R(2) = .9973) while the standard curve of total fluorescence vs. femtomole QDs in solution had a linear response (R(2) = .999). CONCLUSION: A QD assay was developed in this study that provides a direct method for quantifying ligand attachment sites of avidin covalently bound to surfaces. The strong fluorescence signal that is a fundamental characteristic of QDs allows for the measurement of small changes in the amount of these particles in solution or attached to surfaces.


Subject(s)
Biotin/chemistry , Nanofibers/chemistry , Quantum Dots , Avidin/chemistry , Avidin/metabolism , Binding Sites , Biotin/metabolism , Membranes, Artificial , Microscopy, Confocal , Polyvinyl Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...