Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Pharmacol Res Perspect ; 12(3): e1218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867495

ABSTRACT

According to the CDC, both Pfizer and Moderna COVID-19 vaccines contain nucleoside-modified messenger RNA (mRNA) encoding the viral spike glycoprotein of severe acute respiratory syndrome caused by corona virus (SARS-CoV-2), administered via intramuscular injections. Despite their worldwide use, very little is known about how nucleoside modifications in mRNA sequences affect their breakdown, transcription and protein synthesis. It was hoped that resident and circulating immune cells attracted to the injection site make copies of the spike protein while the injected mRNA degrades within a few days. It was also originally estimated that recombinant spike proteins generated by mRNA vaccines would persist in the body for a few weeks. In reality, clinical studies now report that modified SARS-CoV-2 mRNA routinely persist up to a month from injection and can be detected in cardiac and skeletal muscle at sites of inflammation and fibrosis, while the recombinant spike protein may persist a little over half a year in blood. Vaccination with 1-methylΨ (pseudouridine enriched) mRNA can elicit cellular immunity to peptide antigens produced by +1 ribosomal frameshifting in major histocompatibility complex-diverse people. The translation of 1-methylΨ mRNA using liquid chromatography tandem mass spectrometry identified nine peptides derived from the mRNA +1 frame. These products impact on off-target host T cell immunity that include increased production of new B cell antigens with far reaching clinical consequences. As an example, a highly significant increase in heart muscle 18-flourodeoxyglucose uptake was detected in vaccinated patients up to half a year (180 days). This review article focuses on medical biochemistry, proteomics and deutenomics principles that explain the persisting spike phenomenon in circulation with organ-related functional damage even in asymptomatic individuals. Proline and hydroxyproline residues emerge as prominent deuterium (heavy hydrogen) binding sites in structural proteins with robust isotopic stability that resists not only enzymatic breakdown, but virtually all (non)-enzymatic cleavage mechanisms known in chemistry.


Subject(s)
COVID-19 Vaccines , COVID-19 , RNA, Messenger , Spike Glycoprotein, Coronavirus , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , mRNA Vaccines/immunology , Pseudouridine , Recombinant Proteins/administration & dosage , RNA, Viral , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage
2.
J Neurochem ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808598

ABSTRACT

Autism is a neurodevelopmental disorder, the prevalence of which has increased dramatically in the United States over the past two decades. It is characterized by stereotyped behaviors and impairments in social interaction and communication. In this paper, we present evidence that autism can be viewed as a PIN1 deficiency syndrome. Peptidyl-prolyl cis/trans isomerase, NIMA-Interacting 1 (PIN1) is a peptidyl-prolyl cis/trans isomerase, and it has widespread influences in biological organisms. Broadly speaking, PIN1 deficiency is linked to many neurodegenerative diseases, whereas PIN1 over-expression is linked to cancer. Death-associated protein kinase 1 (DAPK1) strongly inhibits PIN1, and the hormone melatonin inhibits DAPK1. Melatonin deficiency is strongly linked to autism. It has recently been shown that glyphosate exposure to rats inhibits melatonin synthesis as a result of increased glutamate release from glial cells and increased expression of metabotropic glutamate receptors. Glyphosate's inhibition of melatonin leads to a reduction in PIN1 availability in neurons. In this paper, we show that PIN1 deficiency can explain many of the unique morphological features of autism, including increased dendritic spine density, missing or thin corpus callosum, and reduced bone density. We show how PIN1 deficiency disrupts the functioning of powerful high-level signaling molecules, such as nuclear factor erythroid 2-related factor 2 (NRF2) and p53. Dysregulation of both of these proteins has been linked to autism. Severe depletion of glutathione in the brain resulting from chronic exposure to oxidative stressors and extracellular glutamate leads to oxidation of the cysteine residue in PIN1, inactivating the protein and further contributing to PIN1 deficiency. Impaired autophagy leads to increased sensitivity of neurons to ferroptosis. It is imperative that further research be conducted to experimentally validate whether the mechanisms described here take place in response to chronic glyphosate exposure and whether this ultimately leads to autism.

4.
Cureus ; 16(1): e52876, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38274635

ABSTRACT

Our understanding of COVID-19 vaccinations and their impact on health and mortality has evolved substantially since the first vaccine rollouts. Published reports from the original randomized phase 3 trials concluded that the COVID-19 mRNA vaccines could greatly reduce COVID-19 symptoms. In the interim, problems with the methods, execution, and reporting of these pivotal trials have emerged. Re-analysis of the Pfizer trial data identified statistically significant increases in serious adverse events (SAEs) in the vaccine group. Numerous SAEs were identified following the Emergency Use Authorization (EUA), including death, cancer, cardiac events, and various autoimmune, hematological, reproductive, and neurological disorders. Furthermore, these products never underwent adequate safety and toxicological testing in accordance with previously established scientific standards. Among the other major topics addressed in this narrative review are the published analyses of serious harms to humans, quality control issues and process-related impurities, mechanisms underlying adverse events (AEs), the immunologic basis for vaccine inefficacy, and concerning mortality trends based on the registrational trial data. The risk-benefit imbalance substantiated by the evidence to date contraindicates further booster injections and suggests that, at a minimum, the mRNA injections should be removed from the childhood immunization program until proper safety and toxicological studies are conducted. Federal agency approval of the COVID-19 mRNA vaccines on a blanket-coverage population-wide basis had no support from an honest assessment of all relevant registrational data and commensurate consideration of risks versus benefits. Given the extensive, well-documented SAEs and unacceptably high harm-to-reward ratio, we urge governments to endorse a global moratorium on the modified mRNA products until all relevant questions pertaining to causality, residual DNA, and aberrant protein production are answered.

5.
EXCLI J ; 22: 992-1011, 2023.
Article in English | MEDLINE | ID: mdl-37927346

ABSTRACT

We report on an aggressive, infiltrating, metastatic, and ultimately lethal basaloid type of carcinoma arising shortly after an mRNA vaccination for COVID-19. The wife of the patient, since deceased, gave the consent for publishing the case. The malignancy was of cutaneous origin and the case showed symptoms consistent with Bell's palsy and trigeminal neuralgia beginning four days post-vaccination (right side head temporal pain). The temporal pain was suggestive for inflammation and impairment of T cell immune activation. Magnetic Resonance Imaging (MRI) showed a vascular loop on the left lateral aspect of the 5th cranial root exit of cerebellopontine angle constituting presumably a normal variant and was considered as an unrelated factor to the right-sided palsy and pain symptoms that corresponded to cranial nerves V (trigeminal nerve) and VII (facial nerve). In this study we describe all aspects of this case and discuss possible causal links between the rapid emergence of this metastatic cancer and mRNA vaccination. We place this within the context of multiple immune impairments potentially related to the mRNA injections that would be expected to potentiate more aggressive presentation and progression of cancer. The type of malignancy we describe suggests a population risk for occurrence of a large variety of relatively common basaloid phenotype cancer cells, which may have the potential for metastatic disease. This can be avoidable with early diagnosis and adequate treatment. Since facial paralysis/pain is one of the more common adverse neurological events following mRNA injection, careful inspection of cutaneous/soft tissue should be conducted to rule out malignancy. An extensive literature review is carried out, in order to elucidate the toxicity of mRNA vaccination that may have led to the death of this patient. Preventive and precise routine clinical investigations can potentially avoid future mortalities. See also Figure 1(Fig. 1).

6.
Autoimmunity ; 56(1): 2259123, 2023 12.
Article in English | MEDLINE | ID: mdl-37710966

ABSTRACT

As a result of the spread of SARS-CoV-2, a global pandemic was declared. Indiscriminate COVID-19 vaccination has been extended to include age groups and naturally immune people with minimal danger of suffering serious complications due to COVID-19. Solid immuno-histopathological evidence demonstrates that the COVID-19 genetic vaccines can display a wide distribution within the body, affecting tissues that are terminally differentiated and far away from the injection site. These include the heart and brain, which may incur in situ production of spike protein eliciting a strong autoimmunological inflammatory response. Due to the fact that every human cell which synthesises non-self antigens, inevitably becomes the target of the immune system, and since the human body is not a strictly compartmentalised system, accurate pharmacokinetic and pharmacodynamic studies are needed in order to determine precisely which tissues can be harmed. Therefore, our article aims to draw the attention of the scientific and regulatory communities to the critical need for biodistribution studies for the genetic vaccines against COVID-19, as well as for rational harm-benefit assessments by age group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , COVID-19/prevention & control , Tissue Distribution , SARS-CoV-2 , Brain
7.
Food Chem Toxicol ; 178: 113898, 2023 08.
Article in English | MEDLINE | ID: mdl-37331560
8.
Cureus ; 15(2): e34872, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36788995

ABSTRACT

Human prion protein and prion-like protein misfolding are widely recognized as playing a causal role in many neurodegenerative diseases. Based on in vitro and in vivo experimental evidence relating to prion and prion-like disease, we extrapolate from the compelling evidence that the spike glycoprotein of SARS-CoV-2 contains extended amino acid sequences characteristic of a prion-like protein to infer its potential to cause neurodegenerative disease. We propose that vaccine-induced spike protein synthesis can facilitate the accumulation of toxic prion-like fibrils in neurons. We outline various pathways through which these proteins could be expected to distribute throughout the body. We review both cellular pathologies and the expression of disease that could become more frequent in those who have undergone mRNA vaccination. Specifically, we describe the spike protein's contributions, via its prion-like properties, to neuroinflammation and neurodegenerative diseases; to clotting disorders within the vasculature; to further disease risk due to suppressed prion protein regulation in the context of widely prevalent insulin resistance; and to other health complications. We explain why these prion-like characteristics are more relevant to vaccine-related mRNA-induced spike proteins than natural infection with SARS-CoV-2. We note with an optimism an apparent loss of prion-like properties among the current Omicron variants. We acknowledge that the chain of pathological events described throughout this paper is only hypothetical and not yet verified. We also acknowledge that the evidence we usher in, while grounded in the research literature, is currently largely circumstantial, not direct. Finally, we describe the implications of our findings for the general public, and we briefly discuss public health recommendations we feel need urgent consideration. An earlier version of this article was previously posted to the Authorea preprint server on August 16, 2022.

9.
Cureus ; 14(12): e32361, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36514706

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and prions use common pathogenic pathways to induce toxicity in neurons. Infectious prions rapidly activate the p38 mitogen activated protein kinase (MAPK) pathway, and SARS-CoV-2 spike proteins rapidly activate both the p38 MAPK and c-Jun NH2-terminal kinase (JNK) pathways through toll-like receptor signaling, indicating the potential for similar neurotoxicity, causing prion and prion-like disease. In this review, we analyze the roles of autophagy inhibition, molecular mimicry, elevated intracellular p53 levels and reduced Wild-type p53-induced phosphatase 1 (Wip1) and dual-specificity phosphatase (DUSP) expression in neurons in the disease process. The pathways induced by the spike protein via toll-like receptor activation induce both the upregulation of PrPC (the normal isoform of the prion protein, PrP) and the expression of ß amyloid. Through the spike-protein-dependent elevation of p53 levels via ß amyloid metabolism, increased PrPC expression can lead to PrP misfolding and impaired autophagy, generating prion disease. We conclude that, according to the age of the spike protein-exposed patient and the state of their cellular autophagy activity, excess sustained activity of p53 in neurons may be a catalytic factor in neurodegeneration. An autoimmune reaction via molecular mimicry likely also contributes to neurological symptoms. Overall results suggest that neurodegeneration is in part due to the intensity and duration of spike protein exposure, patient advanced age, cellular autophagy activity, and activation, function and regulation of p53. Finally, the neurologically damaging effects can be cumulatively spike-protein dependent, whether exposure is by natural infection or, more substantially, by repeated mRNA vaccination.

10.
Food Chem Toxicol ; 164: 113008, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35436552

ABSTRACT

The mRNA SARS-CoV-2 vaccines were brought to market in response to the public health crises of Covid-19. The utilization of mRNA vaccines in the context of infectious disease has no precedent. The many alterations in the vaccine mRNA hide the mRNA from cellular defenses and promote a longer biological half-life and high production of spike protein. However, the immune response to the vaccine is very different from that to a SARS-CoV-2 infection. In this paper, we present evidence that vaccination induces a profound impairment in type I interferon signaling, which has diverse adverse consequences to human health. Immune cells that have taken up the vaccine nanoparticles release into circulation large numbers of exosomes containing spike protein along with critical microRNAs that induce a signaling response in recipient cells at distant sites. We also identify potential profound disturbances in regulatory control of protein synthesis and cancer surveillance. These disturbances potentially have a causal link to neurodegenerative disease, myocarditis, immune thrombocytopenia, Bell's palsy, liver disease, impaired adaptive immunity, impaired DNA damage response and tumorigenesis. We show evidence from the VAERS database supporting our hypothesis. We believe a comprehensive risk/benefit assessment of the mRNA vaccines questions them as positive contributors to public health.


Subject(s)
COVID-19 , Exosomes , G-Quadruplexes , Immunity, Innate , MicroRNAs , Neurodegenerative Diseases , Vaccines, Synthetic , mRNA Vaccines , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Exosomes/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neurodegenerative Diseases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination/adverse effects , Vaccines, Synthetic/adverse effects , mRNA Vaccines/adverse effects
11.
Article in English | MEDLINE | ID: mdl-31370256

ABSTRACT

Chronic kidney disease of unknown etiology (CKDu) is a global epidemic. Sri Lanka has experienced a doubling of the disease every 4 or 5 years since it was first identified in the North Central province in the mid-1990s. The disease primarily affects people in agricultural regions who are missing the commonly known risk factors for CKD. Sri Lanka is not alone: health workers have reported prevalence of CKDu in Mexico, Nicaragua, El Salvador, and the state of Andhra Pradesh in India. A global search for the cause of CKDu has not identified a single factor, but rather many factors that may contribute to the etiology of the disease. Some of these factors include heat stroke leading to dehydration, toxic metals such as cadmium and arsenic, fluoride, low selenium, toxigenic cyanobacteria, nutritionally deficient diet and mycotoxins from mold exposure. Furthermore, exposure to agrichemicals, particularly glyphosate and paraquat, are likely compounding factors, and may be the primary factors. Here, we argue that glyphosate in particular is working synergistically with most of the other factors to increase toxic effects. We propose, further, that glyphosate causes insidious harm through its action as an amino acid analogue of glycine, and that this interferes with natural protective mechanisms against other exposures. Glyphosate's synergistic health effects in combination with exposure to other pollutants, in particular paraquat, and physical labor in the ubiquitous high temperatures of lowland tropical regions, could result in renal damage consistent with CKDu in Sri Lanka.


Subject(s)
Agricultural Workers' Diseases/etiology , Glycine/analogs & derivatives , Herbicides/toxicity , Occupational Exposure/adverse effects , Renal Insufficiency, Chronic/etiology , Agricultural Workers' Diseases/epidemiology , Dehydration/complications , Glycine/toxicity , Heat Stress Disorders/complications , Humans , Paraquat/toxicity , Prevalence , Renal Insufficiency, Chronic/epidemiology , Risk Factors , Sri Lanka/epidemiology , Glyphosate
12.
Dis Markers ; 2016: 8376979, 2016.
Article in English | MEDLINE | ID: mdl-27773962

ABSTRACT

Osteonecrosis of the jaw (ONJ), a rare side effect of bisphosphonate therapy, is a debilitating disorder with a poorly understood etiology. FDA's Adverse Event Reporting System (FAERS) provides the opportunity to investigate this disease. Our goals were to analyze FAERS data to discover possible relationships between ONJ and specific conditions and drugs and then to consult the scientific literature to deduce biological explanations. Our methodology revealed a very strong association between gastroesophageal reflux and bisphosphonate-induced ONJ, suggesting acidosis as a key factor. Overgrowth of acidophilic species, particularly Streptococcus mutans, in the oral microbiome in the context of insufficient acid buffering due to impaired salivary glands maintains the low pH that sustains damage to the mucosa. Significant associations between ONJ and adrenal insufficiency, vitamin C deficiency, and Sjögren's syndrome were found. Glucose 6 phosphate dehydrogenase (G6PD) deficiency can explain much of the pathology. An inability to maintain vitamin C and other antioxidants in the reduced form leads to vascular oxidative damage and impaired adrenal function. Thus, pathogen-induced acidosis, hypoxia, and insufficient antioxidant defenses together induce ONJ. G6PD deficiency and adrenal insufficiency are underlying factors. Impaired supply of adrenal-derived sulfated sterols such as DHEA sulfate may drive the disease process.


Subject(s)
Algorithms , Gastroesophageal Reflux/physiopathology , Glucosephosphate Dehydrogenase Deficiency/complications , Jaw Diseases/pathology , Mucins/adverse effects , Osteonecrosis/pathology , Ascorbic Acid Deficiency/complications , Diphosphonates/adverse effects , Humans , Jaw Diseases/chemically induced , Jaw Diseases/epidemiology , Osteonecrosis/chemically induced , Osteonecrosis/epidemiology , Prognosis
13.
Dis Markers ; 2015: 818570, 2015.
Article in English | MEDLINE | ID: mdl-26543300

ABSTRACT

Gamma-glutamyltransferase (GGT) is a well-established serum marker for alcohol-related liver disease. However, GGT's predictive utility applies well beyond liver disease: elevated GGT is linked to increased risk to a multitude of diseases and conditions, including cardiovascular disease, diabetes, metabolic syndrome (MetS), and all-cause mortality. The literature from multiple population groups worldwide consistently shows strong predictive power for GGT, even across different gender and ethnic categories. Here, we examine the relationship of GGT to other serum markers such as serum ferritin (SF) levels, and we suggest a link to exposure to environmental and endogenous toxins, resulting in oxidative and nitrosative stress. We observe a general upward trend in population levels of GGT over time, particularly in the US and Korea. Since the late 1970s, both GGT and incident MetS and its related disorders have risen in virtual lockstep. GGT is an early predictive marker for atherosclerosis, heart failure, arterial stiffness and plaque, gestational diabetes, and various liver diseases, including viral hepatitis, other infectious diseases, and several life-threatening cancers. We review literature both from the medical sciences and from life insurance industries demonstrating that serum GGT is a superior marker for future disease risk, when compared against multiple other known mortality risk factors.


Subject(s)
Diabetes Mellitus/blood , Metabolic Syndrome/blood , Oxidative Stress , Renal Insufficiency, Chronic/blood , gamma-Glutamyltransferase/blood , Biomarkers/blood , Diabetes Mellitus/epidemiology , Humans , Metabolic Syndrome/epidemiology , Renal Insufficiency, Chronic/epidemiology
14.
Theor Biol Med Model ; 12: 9, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26014131

ABSTRACT

BACKGROUND: Despite a vast literature, atherosclerosis and the associated ischemia/reperfusion injuries remain today in many ways a mystery. Why do atheromatous plaques make and store a supply of cholesterol and sulfate within the major arteries supplying the heart? Why are treatment programs aimed to suppress certain myocardial infarction risk factors, such as elevated serum homocysteine and inflammation, generally counterproductive? METHODS: Our methods are based on an extensive search of the literature in atherosclerotic cardiovascular disease as well as in the area of the unique properties of water, the role of biosulfates in the vascular wall, and the role of electromagnetic fields in vascular flow. Our investigation reveals a novel pathology linked to atherosclerosis that better explains the observed facts than the currently held popular view. RESULTS: We propose a novel theory that atherosclerosis can best be explained as being due to cholesterol sulfate deficiency. Furthermore, atheromatous plaques replenish the supply of cholesterol and sulfate to the microvasculature, by exploiting the inflammatory agent superoxide to derive sulfate from homocysteine and other sulfur sources. We argue that the sulfate anions attached to the glycosaminoglycans in the glycocalyx are essential in maintaining the structured water that is crucial for vascular endothelial health and erythrocyte mobility through capillaries. Sulfate depletion leads to cholesterol accumulation in atheromas, because its transport through water-based media depends on sulfurylation. We show that streaming potential induces nitric oxide (NO) release, and NO derivatives break down the extracellular matrix, redistributing sulfate to the microvasculature. We argue that low (less negative) zeta potential due to insufficient sulfate anions leads to hypertension and thrombosis, because these responses can increase streaming potential and induce nitric-oxide mediated vascular relaxation, promoting oxygen delivery. Our hypothesis is a parsimonious explanation of multiple features of atherosclerotic cardiovascular disease. CONCLUSIONS: If our interpretation is correct, then it would have a significant impact on how atherosclerosis is treated. We recommend a high intake of sulfur-containing foods as well as an avoidance of exposure to toxicants that may impair sulfate synthesis.


Subject(s)
Atherosclerosis/metabolism , Cholesterol Esters/metabolism , Models, Biological , Blood Circulation , Extracellular Matrix/metabolism , Glutathione/metabolism , Glycosaminoglycans/metabolism , Humans , Inflammation/pathology , Syndrome , gamma-Glutamyltransferase/metabolism
15.
Surg Neurol Int ; 6: 45, 2015.
Article in English | MEDLINE | ID: mdl-25883837

ABSTRACT

Manganese (Mn) is an often overlooked but important nutrient, required in small amounts for multiple essential functions in the body. A recent study on cows fed genetically modified Roundup(®)-Ready feed revealed a severe depletion of serum Mn. Glyphosate, the active ingredient in Roundup(®), has also been shown to severely deplete Mn levels in plants. Here, we investigate the impact of Mn on physiology, and its association with gut dysbiosis as well as neuropathologies such as autism, Alzheimer's disease (AD), depression, anxiety syndrome, Parkinson's disease (PD), and prion diseases. Glutamate overexpression in the brain in association with autism, AD, and other neurological diseases can be explained by Mn deficiency. Mn superoxide dismutase protects mitochondria from oxidative damage, and mitochondrial dysfunction is a key feature of autism and Alzheimer's. Chondroitin sulfate synthesis depends on Mn, and its deficiency leads to osteoporosis and osteomalacia. Lactobacillus, depleted in autism, depend critically on Mn for antioxidant protection. Lactobacillus probiotics can treat anxiety, which is a comorbidity of autism and chronic fatigue syndrome. Reduced gut Lactobacillus leads to overgrowth of the pathogen, Salmonella, which is resistant to glyphosate toxicity, and Mn plays a role here as well. Sperm motility depends on Mn, and this may partially explain increased rates of infertility and birth defects. We further reason that, under conditions of adequate Mn in the diet, glyphosate, through its disruption of bile acid homeostasis, ironically promotes toxic accumulation of Mn in the brainstem, leading to conditions such as PD and prion diseases.

16.
J Toxicol ; 2014: 491316, 2014.
Article in English | MEDLINE | ID: mdl-25349607

ABSTRACT

Over the last 200 years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living species to this naturally abundant metal. Because of its prevalence in the earth's crust, prior to its recent uses it was regarded as inert and therefore harmless. However, Al is invariably toxic to living systems and has no known beneficial role in any biological systems. Humans are increasingly exposed to Al from food, water, medicinals, vaccines, and cosmetics, as well as from industrial occupational exposure. Al disrupts biological self-ordering, energy transduction, and signaling systems, thus increasing biosemiotic entropy. Beginning with the biophysics of water, disruption progresses through the macromolecules that are crucial to living processes (DNAs, RNAs, proteoglycans, and proteins). It injures cells, circuits, and subsystems and can cause catastrophic failures ending in death. Al forms toxic complexes with other elements, such as fluorine, and interacts negatively with mercury, lead, and glyphosate. Al negatively impacts the central nervous system in all species that have been studied, including humans. Because of the global impacts of Al on water dynamics and biosemiotic systems, CNS disorders in humans are sensitive indicators of the Al toxicants to which we are being exposed.

17.
Surg Neurol Int ; 5: 97, 2014.
Article in English | MEDLINE | ID: mdl-25024897

ABSTRACT

The number of sports-related concussions has been steadily rising in recent years. Diminished brain resilience syndrome is a term coined by the lead author to describe a particular physiological state of nutrient functional deficiency and disrupted homeostatic mechanisms leading to increased susceptibility to previously considered innocuous concussion. We discuss how modern day environmental toxicant exposure, along with major changes in our food supply and lifestyle practices, profoundly reduce the bioavailability of neuro-critical nutrients such that the normal processes of homeostatic balance and resilience are no longer functional. Their diminished capacity triggers physiological and biochemical 'work around' processes that result in undesirable downstream consequences. Exposure to certain environmental chemicals, particularly glyphosate, the active ingredient in the herbicide, Roundup(®), may disrupt the body's innate switching mechanism, which normally turns off the immune response to brain injury once danger has been removed. Deficiencies in serotonin, due to disruption of the shikimate pathway, may lead to impaired melatonin supply, which reduces the resiliency of the brain through reduced antioxidant capacity and alterations in the cerebrospinal fluid, reducing critical protective buffering mechanisms in impact trauma. Depletion of certain rare minerals, overuse of sunscreen and/or overprotection from sun exposure, as well as overindulgence in heavily processed, nutrient deficient foods, further compromise the brain's resilience. Modifications to lifestyle practices, if widely implemented, could significantly reduce this trend of neurological damage.

18.
Interdiscip Toxicol ; 6(4): 159-84, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24678255

ABSTRACT

Celiac disease, and, more generally, gluten intolerance, is a growing problem worldwide, but especially in North America and Europe, where an estimated 5% of the population now suffers from it. Symptoms include nausea, diarrhea, skin rashes, macrocytic anemia and depression. It is a multifactorial disease associated with numerous nutritional deficiencies as well as reproductive issues and increased risk to thyroid disease, kidney failure and cancer. Here, we propose that glyphosate, the active ingredient in the herbicide, Roundup(®), is the most important causal factor in this epidemic. Fish exposed to glyphosate develop digestive problems that are reminiscent of celiac disease. Celiac disease is associated with imbalances in gut bacteria that can be fully explained by the known effects of glyphosate on gut bacteria. Characteristics of celiac disease point to impairment in many cytochrome P450 enzymes, which are involved with detoxifying environmental toxins, activating vitamin D3, catabolizing vitamin A, and maintaining bile acid production and sulfate supplies to the gut. Glyphosate is known to inhibit cytochrome P450 enzymes. Deficiencies in iron, cobalt, molybdenum, copper and other rare metals associated with celiac disease can be attributed to glyphosate's strong ability to chelate these elements. Deficiencies in tryptophan, tyrosine, methionine and selenomethionine associated with celiac disease match glyphosate's known depletion of these amino acids. Celiac disease patients have an increased risk to non-Hodgkin's lymphoma, which has also been implicated in glyphosate exposure. Reproductive issues associated with celiac disease, such as infertility, miscarriages, and birth defects, can also be explained by glyphosate. Glyphosate residues in wheat and other crops are likely increasing recently due to the growing practice of crop desiccation just prior to the harvest. We argue that the practice of "ripening" sugar cane with glyphosate may explain the recent surge in kidney failure among agricultural workers in Central America. We conclude with a plea to governments to reconsider policies regarding the safety of glyphosate residues in foods.

20.
Med Hypotheses ; 78(2): 213-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22098722

ABSTRACT

Autism is a condition characterized by impaired cognitive and social skills, often associated with compromised immune function. There has been considerable concern recently that the incidence of autism is alarmingly on the rise, especially in Western nations, and environmental factors are increasingly suspected to play a role. In this paper, we propose a novel hypothesis for a principle cause of autism, namely insufficient supply of cholesterol sulfate to the fetus during gestation and the infant postnatally. We hypothesize that main contributory factors are insufficient sun exposure and insufficient dietary sulfur, for both the mother and the affected child. A novel contribution is the theory that endothelial nitric oxide synthase produces not only nitric oxide but also sulfate, and that sulfate production is stimulated by sunlight. We further hypothesize that the sulfur shortage manifests as an impaired immune response, including an increased susceptibility to eczema and asthma. Proposed corrective measures involve increased dietary sulfur intake for both the mother and the child, and increased sun exposure.


Subject(s)
Child Development Disorders, Pervasive/etiology , Cholesterol Esters/metabolism , Sulfur/deficiency , Androsterone/metabolism , Child , Child Development Disorders, Pervasive/epidemiology , Diet , Estrogens/metabolism , Female , Humans , Immune System , Maternal Exposure , Nitric Oxide/chemistry , Nitric Oxide Synthase Type III/metabolism , Pregnancy , Pregnancy Complications , Sulfates/chemistry , Sulfur/chemistry , Sulfur/metabolism , Sunlight
SELECTION OF CITATIONS
SEARCH DETAIL
...