Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Curr Stem Cell Res Ther ; 16(5): 495-506, 2021.
Article in English | MEDLINE | ID: mdl-33588741

ABSTRACT

BACKGROUND: Mesenchymal Stromal Cells (MSC) have the potential for self-renewal and differentiation in different tissues, characteristics that encourage their use in regenerative medicine. Dental tissue MSCs are easy to collect, have the same embryonic origin as neurons and have neuronal markers that allow their use in treating neurodegenerative diseases. Human Exfoliated Deciduous teeth (SHED)-derived stromal cells are considered immature and present positive expression of pluripotency and neuronal markers. Studies have shown that after the induction of neuronal differentiation in vitro, SHED increased the expression of neuronal markers, such as ßIIItubulin, nestin, GFAP, NeuN, and NFM, demonstrating the potential use of these cells in preclinical studies. The results of this review reflect the consensus that in diseases such as spinal cord injury, cerebral ischaemia, and Alzheimer's and Parkinson's disease, SHED could function in the suppression of the inflammatory response, neuroprotection, and neuronal replacement. CONCLUSION: For these cells to be used in large-scale clinical trials, standardization of the isolation techniques and theneuronal induction medium are necessary. The potential of SHED to induce neuronal differentiation is evident, demonstrating that this resource is promising and shows great potential for use in future preclinical and clinical trials of neurodegenerative diseases.


Subject(s)
Dental Pulp , Mesenchymal Stem Cells , Neurons , Cell Differentiation , Cells, Cultured , Dental Pulp/cytology , Humans , Tooth, Deciduous
2.
Front Immunol ; 11: 993, 2020.
Article in English | MEDLINE | ID: mdl-32582156

ABSTRACT

Objective: To evaluate the short term safety and potential therapeutic effect of allogenic adipose tissue-derived stromal/stem cells (ASCs) + cholecalciferol in patients with recent-onset T1D. Methods: Prospective, phase II, open trial, pilot study in which patients with recent onset T1D received ASCs (1 × 106 cells/kg) and cholecalciferol 2000 UI/day for 3 months (group 1) and were compared to controls with standard insulin therapy (group 2). Adverse events, C-peptide (CP), insulin dose, HbA1c, time in range (TIR), glucose variability (continuous glucose monitoring) and frequency of CD4+FoxP3+ T-cells (flow cytometry) were evaluated at baseline (T0) and after 3 months (T3). Results: 13 patients were included (8: group 1; 5: group 2). Their mean age and disease duration were 26.7 ± 6.1 years and 2.9 ± 1.05 months. Adverse events were transient headache (n = 8), mild local reactions (n = 7), tachycardia (n = 4), abdominal cramps (n = 1), thrombophlebitis (n = 4), mild floaters (n = 2), central retinal vein occlusion (n = 1, complete resolution). At T3, group 1 had lower insulin requirement (0.22 ± 0.17 vs. 0.61±0.26IU/Kg; p = 0.01) and HbA1c (6.47 ± 0.86 vs. 7.48 ± 0.52%; p = 0.03) than group 2. In group 1, 2 patients became insulin free (for 4 and 8 weeks) and all were in honeymoon at T3 (vs. none in group 2; p = 0.01). CP variations did not differ between groups (-4.6 ± 29.1% vs. +2.3 ± 59.65%; p = 0.83). Conclusions: Allogenic ASCs + cholecalciferol without immunosuppression was associated with stability of CP and unanticipated mild transient adverse events in patients with recent onset T1D. ClinicalTrials.gov registration: NCT03920397.


Subject(s)
Adipose Tissue/cytology , Cholecalciferol/therapeutic use , Diabetes Mellitus, Type 1/therapy , Dietary Supplements , Mesenchymal Stem Cell Transplantation , Vitamins/therapeutic use , Adolescent , Adult , Biomarkers/blood , Blood Glucose/metabolism , Brazil , Cholecalciferol/adverse effects , Combined Modality Therapy , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/diagnosis , Dietary Supplements/adverse effects , Female , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Pilot Projects , Prospective Studies , Time Factors , Transplantation, Homologous , Treatment Outcome , Vitamins/adverse effects , Young Adult
3.
Int J Mol Sci ; 21(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326648

ABSTRACT

Mesenchymal stromal cells (MSCs) can self-renew, differentiate into specialised cells and have different embryonic origins-ectodermal for dental pulp-derived MSCs (DPSCs) and mesodermal for adipose tissue-derived MSCs (ADSCs). Data on DPSCs adipogenic differentiation potential and timing vary, and the lack of molecular and genetic information prompted us to gain a better understanding of DPSCs adipogenic differentiation potential and gene expression profile. While DPSCs differentiated readily along osteogenic and chondrogenic pathways, after 21 days in two different types of adipogenic induction media, DPSCs cultures did not contain lipid vacuoles and had low expression levels of the adipogenic genes proliferator-activated receptor gamma (PPARG), lipoprotein lipase (LPL) and CCAAT/enhancer-binding protein alpha (CEBPA). To better understand this limitation in adipogenesis, transcriptome analysis in undifferentiated DPSCs was carried out, with the ADSC transcriptome used as a positive control. In total, 14,871 transcripts were common to DPSCs and ADSCs, some were unique (DPSCs: 471, ADSCs: 1032), and 510 were differentially expressed genes. Detailed analyses of overrepresented transcripts showed that DPSCs express genes that inhibit adipogenic differentiation, revealing the possible mechanism for their limited adipogenesis.


Subject(s)
Adipogenesis/genetics , Dental Pulp/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Bone Morphogenetic Protein 1/genetics , Bone Morphogenetic Protein 1/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , Gene Expression Profiling , Gene Ontology , Humans , Immunophenotyping , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Multigene Family , PPAR gamma/genetics , PPAR gamma/metabolism , RNA-Seq , Vacuoles/metabolism , Wnt Signaling Pathway/genetics
4.
Stem Cells Int ; 2019: 4802578, 2019.
Article in English | MEDLINE | ID: mdl-31885610

ABSTRACT

Myocardial infarction is a leading cause of death among all cardiovascular diseases. Cell therapies using a cell population enriched with endothelial progenitor cells (EPCs), expanded CD133+ cells, have promise as a therapeutic option for the treatment of ischemic areas after infarction. Recently, secreted membrane vesicles, including exosomes and microvesicles, have been recognized as new therapeutic candidates with important roles in intercellular and tissue communication. Expanded CD133+ cells have the ability to produce extracellular vesicles (EVs); however, their effect in the context of the heart is unknown. In the present study, we evaluated the effectiveness of the systemic application of expanded CD133+ cells and expanded CD133+ cell-derived EVs for the treatment of ischemic cardiomyopathy in a rat model of acute myocardial infarction (AMI) and examined the hypothesis that the EVs, because of their critical role in transferring regenerative signals from stem cells to the injured tissues, might elicit an equal or better therapeutic response than the expanded CD133+ cells. We demonstrate that the systemic application of expanded CD133+ cells and EVs has similar effects in infarcted rats. Few animals per group showed improvements in several heart and kidney parameters analyzed, but not significant differences were observed when comparing the groups. The systemic route may not be effective to treat ischemic cardiomyopathy; nonetheless, it may be a beneficial therapy to treat the side effects of AMI such as kidney damage.

5.
Cryobiology ; 78: 95-100, 2017 10.
Article in English | MEDLINE | ID: mdl-28645680

ABSTRACT

There is no consensus on aspects of equine bone marrow collection and processing. The study aimed to describe the collection of large volumes of bone marrow from horses of advanced age, with emphasis on bone marrow mononuclear cells (BMMCs) recovery and viability after cryopreservation. Fourteen horses, aged 3-24 years, were divided into three experiments. E1 studied the feasibility of collecting 200 mL from the sternums of horses of advanced age; E2 examined the number of cells obtained from the first and last syringe of each puncture; and E3 investigated the influence of heparin concentration on the prevention of cell aggregation, and cell viability after freezing in liquid nitrogen. Bone marrow aspirations were done with syringes pre-filled with Iscove's modified Dulbecco's medium and different concentrations of sodium heparin. BMMCs were counted, cell viability was determined, and samples were frozen. Bone marrow collection from the sternum is safe, even at large volumes and from horses of advanced age, and the number of cells recovered decreases with successive aspirations (p < 0.0001). Heparin concentration influenced cell aggregation, and recovered cells continued to be commercially viable after 150 days in frozen storage.


Subject(s)
Bone Marrow Cells/physiology , Cell Aggregation/drug effects , Cryopreservation/methods , Heparin/pharmacology , Leukocytes, Mononuclear/physiology , Animals , Cell Count , Cell Survival/drug effects , Female , Freezing , Horses , Male , Sternum/cytology
6.
Stem Cell Rev Rep ; 13(2): 244-257, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28054239

ABSTRACT

Adult stem cells have beneficial effects when exposed to damaged tissue due, at least in part, to their paracrine activity, which includes soluble factors and extracellular vesicles (EVs). Given the multiplicity of signals carried by these vesicles through the horizontal transfer of functional molecules, human mesenchymal stem cell (hMSCs) and CD133+ cell-derived EVs have been tested in various disease models and shown to recover damaged tissues. In this study, we profiled the protein content of EVs derived from expanded human CD133+ cells and bone marrow-derived hMSCs with the intention of better understanding the functions performed by these vesicles/cells and delineating the most appropriate use of each EV in future therapeutic procedures. Using LC-MS/MS analysis, we identified 623 proteins for expanded CD133+-EVs and 797 proteins for hMSCs-EVs. Although the EVs from both origins were qualitatively similar, when protein abundance was considered, hMSCs-EVs and CD133+-EVs were different. Gene Ontology (GO) enrichment analysis in CD133+-EVs revealed proteins involved in a variety of angiogenesis-related functions as well proteins related to the cytoskeleton and highly implicated in cell motility and cellular activation. In contrast, when overrepresented proteins in hMSCs-EVs were analyzed, a GO cluster of immune response-related genes involved with immune response-regulating factors acting on phagocytosis and innate immunity was identified. Together our data demonstrate that from the point of view of protein content, expanded CD133+-EVs and hMSCs-EVs are in part similar but also sufficiently different to reflect the main beneficial paracrine effects widely reported in pre-clinical studies using expanded CD133+ cells and/or hBM-MSCs.


Subject(s)
Extracellular Vesicles/metabolism , Fetal Blood/metabolism , Mesenchymal Stem Cells/metabolism , Proteome/metabolism , Regenerative Medicine/methods , AC133 Antigen/blood , Apoptosis , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Proliferation , Cells, Cultured , Chromatography, Liquid , Exosomes/metabolism , Exosomes/ultrastructure , Extracellular Vesicles/ultrastructure , Fetal Blood/cytology , Humans , Mesenchymal Stem Cells/cytology , Microscopy, Electron, Transmission , Necrosis , Proteomics/methods , Tandem Mass Spectrometry
7.
Respir Physiol Neurobiol ; 232: 35-42, 2016 10.
Article in English | MEDLINE | ID: mdl-27396936

ABSTRACT

This research evaluated the effects of bone marrow-derived mononuclear cells (BMMCs) on the inflammatory process in the equine recurrent airway obstruction (RAO). Eight horses in RAO clinical score were divided into cell therapy group (Gcel) treated with a single intratracheal dose of BMMCs, and dexamethasone group (Gdex) treated with 21days of oral dexamethasone. The horses were clinically revaluated on days 7 and 21, together with cytological evaluation of the BALF, and detection of inflammatory markers (interleukins [IL]-10, -4, and -17, and interferon γ and α). There were decreases in respiratory effort and clinical score on days 7 and 21(p<0.05) for both groups. The percentage of neutrophils decreased and macrophages increased on days 7 and 21 (p<0.005) in both groups. IL-10 levels increased in the Gcel group on day 21 compared to days 0 and 7 (p<0.05), but this was not observed in the Gdex group. The quantification of IL-4, IL-17, IFN-γ, and IFN-α did not change between evaluations in both groups. These preliminary results suggest that BMMCs may ameliorate the inflammatory response of RAO.


Subject(s)
Airway Obstruction , Bone Marrow Transplantation/methods , Inflammation , Airway Obstruction/complications , Airway Obstruction/surgery , Airway Obstruction/veterinary , Analysis of Variance , Animals , Bronchoalveolar Lavage Fluid/microbiology , Dexamethasone/therapeutic use , Female , Flow Cytometry , Follow-Up Studies , Horses , Inflammation/complications , Inflammation/surgery , Inflammation/veterinary , Injection, Intratympanic/methods , Interleukin-10/metabolism , Macrophages/physiology , Male , Neutrophils/physiology , Transplantation, Autologous
8.
Exp Biol Med (Maywood) ; 240(7): 969-78, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25576340

ABSTRACT

The development of new therapeutic strategies is necessary to reduce the worldwide social and economic impact of cardiovascular disease, which produces high rates of morbidity and mortality. A therapeutic option that has emerged in the last decade is cell therapy. The aim of this study was to compare the effect of transplanting human umbilical cord-derived stromal cells (UCSCs), human umbilical cord blood-derived endothelial cells (UCBECs) or a combination of these two cell types for the treatment of ischemic cardiomyopathy (IC) in a Wistar rat model. IC was induced by left coronary artery ligation, and baseline echocardiography was performed seven days later. Animals with a left ventricular ejection fraction (LVEF) of ≤40% were selected for the study. On the ninth day after IC was induced, the animals were randomized into the following experimental groups: UCSCs, UCBECs, UCSCs plus UCBECs, or vehicle (control). Thirty days after treatment, an echocardiographic analysis was performed, followed by euthanasia. The animals in all of the cell therapy groups, regardless of the cell type transplanted, had less collagen deposition in their heart tissue and demonstrated a significant improvement in myocardial function after IC. Furthermore, there was a trend of increasing numbers of blood vessels in the infarcted area. The median value of LVEF increased by 7.19% to 11.77%, whereas the control group decreased by 0.24%. These results suggest that UCSCs and UCBECs are promising cells for cellular cardiomyoplasty and can be an effective therapy for improving cardiac function following IC.


Subject(s)
Cord Blood Stem Cell Transplantation/methods , Endothelial Cells/transplantation , Mesenchymal Stem Cell Transplantation/methods , Myocardial Ischemia/surgery , Animals , Cell Separation , Disease Models, Animal , Flow Cytometry , Fluorescent Antibody Technique , Humans , Male , Mesenchymal Stem Cells , Rats , Rats, Wistar , Transplantation, Heterologous
9.
Exp Mol Pathol ; 90(2): 149-56, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21111728

ABSTRACT

Stem cell therapy has been considered a promise for damaged myocardial tissue. We have previously shown that S-nitroso-N-acetyl-D,L-penicillamine (SNAP) increases the expression of several muscular markers and VEGF in mesenchymal stem cells, indicating that transplantation of SNAP-treated cells could provide better functional outcomes. Here, we transplanted SNAP-treated adipose tissue-derived stem cells (ADSCs) in rat infarcted myocardium. After 30days, we observed a significant improvement of the ejection fraction in rats that received SNAP-treated ADSCs, compared with those that received untreated cells (p=0.008). Immunohistochemical reactions showed an increased expression of troponin T-C and von Willebrand factor, and organized vascular units in the infarcted area of tissue transplanted with treated ADSCs. SNAP exposure induced intracellular S-nitrosation, a decreased GSH/GSSG ratio, but did not increase cGMP levels. Collectively, these results indicate that SNAP alters the redox environment of ADSCs, possibly associated with a pre-differentiation state, which may improve cardiac function after transplantation.


Subject(s)
Adipose Tissue/cytology , Heart/physiopathology , Myocardial Infarction/therapy , Neovascularization, Physiologic/drug effects , S-Nitroso-N-Acetylpenicillamine/pharmacology , Stem Cell Transplantation , Stem Cells/cytology , Animals , Glutathione/metabolism , Green Fluorescent Proteins/metabolism , Heart/drug effects , Heart Function Tests/drug effects , Intracellular Space/drug effects , Intracellular Space/metabolism , Male , Myocardial Infarction/physiopathology , Nitrosation/drug effects , Rats , Rats, Wistar , Stem Cells/drug effects , Stem Cells/metabolism , Stroke Volume/drug effects , Troponin/metabolism , von Willebrand Factor/metabolism
10.
Exp Biol Med (Maywood) ; 235(1): 119-29, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20404026

ABSTRACT

Endothelial progenitor cells (EPCs), which express the CD133 marker, can differentiate into mature endothelial cells (ECs) and create new blood vessels. Normal angiogenesis is unable to repair the injured tissues that result from myocardial infarction (MI). Patients who have high cardiovascular risks have fewer EPCs and their EPCs exhibit greater in vitro senescence. Human umbilical cord blood (HUCB)-derived EPCs could be an alternative to rescue impaired stem cell function in the sick and elderly. The aim of this study was to purify HUCB-derived CD133(+) cells, expand them in vitro and evaluate the efficacy of the purified and expanded cells in treating MI in rats. CD133(+) cells were selected for using CD133-coupled magnetic microbeads. Purified cells stained positive for EPC markers. The cells were expanded and differentiated in media supplemented with fetal calf serum and basic fibroblast growth factor, insulin-like growth factor-I and vascular endothelial growth factor (VEGF). Differentiation was confirmed by lack of staining for EPC markers. These expanded cells exhibited increased expression of mature EC markers and formed tubule-like structures in vitro. Only the expanded cells expressed VEGF mRNA. Cells were expanded up to 70-fold during 60 days of culture, and they retained their functional activity. Finally, we evaluated the therapeutic potential of purified and expanded CD133(+) cells in treating MI by intramyocardially injecting them into a rat model of MI. Rats were divided into three groups: A (purified CD133(+) cells-injected); B (expanded CD133(+) cells-injected) and C (saline buffer-injected). We observed a significant improvement in left ventricular ejection fraction for groups A and B. In summary, CD133(+) cells can be purified from HUCB, expanded in vitro without loosing their biological activity, and both purified and expanded cells show promising results for use in cellular cardiomyoplasty. However, further pre-clinical testing should be performed to determine whether expanded CD133(+) cells have any clinical advantages over purified CD133(+) cells.


Subject(s)
Antigens, CD/metabolism , Fetal Blood/cytology , Glycoproteins/metabolism , Myocardial Infarction/therapy , Peptides/metabolism , Stem Cell Transplantation , AC133 Antigen , Animals , Base Sequence , Capillaries/growth & development , Cell Differentiation , Cell Proliferation , DNA Primers/genetics , Endothelial Cells/cytology , Endothelial Cells/immunology , Endothelial Cells/metabolism , Fetal Blood/immunology , Fetal Blood/metabolism , Humans , Immunomagnetic Separation , In Vitro Techniques , Infant, Newborn , Male , Myocardial Infarction/physiopathology , Neovascularization, Physiologic , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Transplantation, Heterologous , Vascular Endothelial Growth Factor A/genetics , Ventricular Function, Left
11.
Br J Haematol ; 148(2): 311-22, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20095088

ABSTRACT

Cytomegalovirus (CMV) causes significant morbidity and mortality in patients after haematopoietic stem cell transplantation (HSCT). Due to limitations of current antiviral therapies, alternative approaches, involving transfer of donor-derived CMV-specific CD8(+) T cells, have been considered. Levels of such cells correlating with protection against CMV infection and disease have only been reported in patients expressing HLA-A*0201 and HLA-B*0702. This is despite an increasing number of reports describing cells targeting CMV peptides presented by other human leucocyte antigens (HLAs). Considering several frequent HLA alleles, our findings suggest that HLA-A*2402/pp65 (341-349)- and HLA-B*3501/pp65 (123-131)-specific CD8+ T cells correlate with protection from CMV reactivation at significantly lower cell levels than HLA-A*0101/pp50 (245-253)- and HLAA* 0201/pp65 (495-503)-specific CD8+ T cells, both in HSCT recipients posttransplant and in healthy CMV seropositive volunteers. This may result from a differing efficiency of the responses restricted by the two sets of HLA alleles. These findings add to the knowledge of immunodominance and differences in antigen processing that are coordinated in individuals with different HLA alleles and have direct implications for therapy and monitoring in patients.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Adolescent , Adult , Antigens, Viral/genetics , Antiviral Agents/therapeutic use , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/genetics , Cytotoxicity, Immunologic/genetics , Cytotoxicity, Immunologic/immunology , Female , Flow Cytometry , Ganciclovir/therapeutic use , HLA-A Antigens/genetics , HLA-A2 Antigen , HLA-B Antigens/genetics , HLA-B7 Antigen , Hematologic Diseases/therapy , Hematologic Diseases/virology , Humans , Male , Middle Aged , Viral Load , Young Adult
12.
Br J Haematol ; 148(2): 311-322, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19895611

ABSTRACT

Cytomegalovirus (CMV) causes significant morbidity and mortality in patients after haematopoietic stem cell transplantation (HSCT). Due to limitations of current antiviral therapies, alternative approaches, involving transfer of donor-derived CMV-specific CD8(+) T cells, have been considered. Levels of such cells correlating with protection against CMV infection and disease have only been reported in patients expressing HLA-A*0201 and HLA-B*0702. This is despite an increasing number of reports describing cells targeting CMV peptides presented by other human leucocyte antigens (HLAs). Considering several frequent HLA alleles, our findings suggest that HLA-A*2402/pp65 (341-349)- and HLA-B*3501/pp65 (123-131)-specific CD8(+) T cells correlate with protection from CMV reactivation at significantly lower cell levels than HLA-A*0101/pp50 (245-253)- and HLA-A*0201/pp65 (495-503)-specific CD8(+) T cells, both in HSCT recipients post-transplant and in healthy CMV seropositive volunteers. This may result from a differing efficiency of the responses restricted by the two sets of HLA alleles. These findings add to the knowledge of immunodominance and differences in antigen processing that are coordinated in individuals with different HLA alleles and have direct implications for therapy and monitoring in patients.

13.
Rev. bras. hematol. hemoter ; 31(supl.1): 9-14, maio 2009.
Article in Portuguese | LILACS | ID: lil-519663

ABSTRACT

Células-tronco/progenitoras frequentemente não estão disponíveis em quantidade suficiente para restauração de órgãos e tecidos danificados, sendo necessária sua expansão in vitro. Instalações físicas adequadas, pessoal técnico qualificado, reagentes de grau clínico e protocolos bem definidos de acordo com as condições de boas práticas de fabricação são imprescindíveis para assegurar a qualidade e segurança das células infundidas no paciente. A medula óssea e o sangue de cordão umbilical ainda são as fontes de células mais utilizadas em terapias. Protocolos bem sucedidos de expansão utilizando células-tronco hematopoéticas, células-tronco mesenquimais e células progenitoras endoteliais já têm sido empregados em estudos pré-clínicos e clínicos. A escolha do tipo celular adequado deve ser direcionada pelo tamanho da lesão ou natureza do tecido tratado e pelo efeito terapêutico desejado. Estudos recentes têm demonstrado que propriedades de diferentes células expandidas in vitro podem ser combinadas para obtenção de um resultado melhor no tratamento de algumas doenças. Células em culturas de longo termo precisam ser acompanhadas por meio de diversas técnicas de citogenética clássica e molecular para demonstrar que não há evidências de transformação espontânea ou sinais de imortalização. Ensaios utilizando a infusão de células expandidas através da barreira alogeneica e xenogeneica, apresentaram melhora funcional e foram alcançados sem imunossupressão e sem evidências de infiltrados celulares que indicariam resposta imune. Porém, mais estudos precisam ser realizados para avaliar a imunogenicidade destas células e garantir a segurança da terapia celular alogênica permitindo sua consolidação no uso clínico. Aqui apresentamos uma atualização sobre expansão celular associada com seu uso clínico.


Stem/progenitor cells are not frequently available in large enough amounts to repair damaged tissues and organs and so in vitro expansion is necessary. Appropriate facilities, qualified technicians, clinical-grade reagents and well defined protocols relating to good manufacturing products are essential to assure the quality and security of the cells injected in the patient. Bone marrow and human umbilical cord blood are still the best sources of cells for therapies. Successful expansion protocols using hematopoietic stem cells, mesenchymal stem cells and endothelial progenitor cells have already been used in clinical and pre-clinical trials. Adequate cell choice should consider the extent of injury or nature of the damaged tissue and the desired therapeutic effect. Recent studies have demonstrated that properties of different in vitro expanded cells can be combined aiming to improve the outcome of the treatment of some diseases. Long-term cell cultures need to be followed up by classical and molecular cytogenetic techniques to demonstrate that there is no evidence of spontaneous transformation or signs of immortalization. Assays using expanded cell infusions across both xenogeneic and allogeneic transplant barriers showed functional improvement and were achieved without immunosuppression and without evidence of a cellular infiltrate that would indicate an immune response. However, more research needs to be performed to evaluate the immunogenicity of these cells and to guarantee the safety of allogeneic cell therapy, allowing consolidation of their clinical use. Here, we present an update regarding cellular expansion associated with their clinical use.


Subject(s)
Humans , Bone Marrow , Cord Blood Stem Cell Transplantation , Fetal Blood , Nerve Regeneration , Stem Cells , Tissue Expansion , Umbilical Cord
14.
Biochem Biophys Res Commun ; 378(3): 456-61, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19032948

ABSTRACT

Mesenchymal stem cells (MSCs) have received special attention for cardiomyoplasty because several studies have shown that they differentiate into cardiomyocytes both in vitro and in vivo. Nitric oxide (NO) is a free radical signaling molecule that regulates several differentiation processes including cardiomyogenesis. Here, we report an investigation of the effects of two NO agents (SNAP and DEA/NO), able to activate both cGMP-dependent and -independent pathways, on the cardiomyogenic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs). The cells were isolated, cultured and treated with NO agents. Cardiac- and muscle-specific gene expression was analyzed by indirect immunofluorescence, flow cytometry, RT-PCR and real-time PCR. We found that untreated (control) ADSCs and BM-MSCs expressed some muscle markers and NO-derived intermediates induce an increased expression of some cardiac function genes in BM-MSCs and ADSCs. Moreover, NO agents considerably increased the pro-angiogenic potential mostly of BM-MSCs as determined by VEGF mRNA levels.


Subject(s)
Adult Stem Cells/drug effects , Cell Differentiation/drug effects , Hydrazines/pharmacology , Mesenchymal Stem Cells/drug effects , Myocytes, Cardiac/cytology , Nitric Oxide Donors/pharmacology , Penicillamine/analogs & derivatives , Adult , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Aged , Antigens, CD/genetics , Cardiomyoplasty , Cell Differentiation/genetics , Cells, Cultured , Connexin 43/genetics , Gene Expression , Genetic Markers , Heart/physiology , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Middle Aged , Multipotent Stem Cells/cytology , Multipotent Stem Cells/drug effects , Multipotent Stem Cells/metabolism , Muscle Proteins/genetics , Nitric Oxide/metabolism , Penicillamine/pharmacology , Vascular Endothelial Growth Factor A/genetics
15.
Rev. bras. cir. cardiovasc ; 19(3): 261-266, jul.-set. 2004. ilus, tab
Article in Portuguese | LILACS | ID: lil-416939

ABSTRACT

OBJETIVO: Apresentar os resultados funcionais, imunocitoquímicos e histopatológicos, in vitro ou em espécimes cardíacas após isolamento, cultura e co-cultura de células tronco mesenquimais, células mioblásticas esqueléticas e transplantadas e co-transplantadas em animais de laboratório com miocardiopatia isquêmica e fração de ejeção do ventrículo esquerdo menor de 40 por cento. MÉTODO: Foram empregados 72 ratos Wistar, divididos em quatro grupos de acordo com o meio de cultura ou das células injetáveis: Grupo controle em que foi injetado apenas o meio de cultura (22 ratos); Grupo de células tronco mesenquimais (17 ratos); Grupo de células mioblásticas esqueléticas (16 ratos) e grupo co-cultura (17 ratos). Nos estudos imunocitoquímicos, as células foram marcadas com anti-vimentina, anti-desmina e anti-miosina. Nos estudos histopatológicos, as lâminas foram coradas com Tricômio de Gomori e identificados neovasos e tecido muscular. Na análise funcional, foi medida a fração de ejeção do ventrículo esquerdo em dois momentos do seguimento, uma semana após o infarto do miocárdio e um mês após a injeção. RESULTADOS: A fração de ejeção do ventrículo esquerdo entre os quatro grupos não apresentou diferença estatística significante (P=0,276), o ecocardiograma de seguimento demonstrou diferença estatística significante (P=0,001). Essa diferença ocorreu entre o grupo controle e o grupo de células mioblásticas esqueléticas (P=0,037), entre o grupo controle e o grupo co-cultura (P<0,001) e o grupo de células tronco mesenquimais e o grupo co-cultura (P=0,025). Quando se compararam as medidas obtidas dos dois ecocardiogramas em cada grupo, encontrou-se diferença no grupo controle (P=0,005) para pior e no grupo co-cultura (P=0,006) para melhor. No estudo imunocitoquímico in vitro, identificou-se células tronco mesenquimais quando marcou-se com anti-vimentina e células musculares, com anti-desmina. Nas espécimes cardíacas, identificou-se tecido muscular marcada com anti-desmina e células mioblásticas esqueléticas marcadas com anti-miosina rápida. No estudo histopatológico, observaram-se novos vasos no grupo de células tronco mesenquimais, no grupo de células mioblásticas esqueléticas, tecido muscular e angiogênese e miogênese no grupo co-cultura. CONCLUSAO: A fração de ejeção do ventrículo esquerdo melhorou no grupo em que foram injetadas células musculares, mais acentuadamente no grupo co-cultura.


Subject(s)
Animals , Rats , Cell Culture Techniques , Cell Transplantation , In Vitro Techniques , Myocardial Infarction/therapy , Myocardial Ischemia , Animal Experimentation , Echocardiography/methods , Bone Marrow/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...