Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Rev Proteomics ; 16(2): 171-184, 2019 02.
Article in English | MEDLINE | ID: mdl-30556786

ABSTRACT

Background: Snakebite is a severe problem in the tropical countries including Indian subcontinent. Premier cases of cobra bites are being reported from western India (WI). Research design and methods: The proteome of WI N. naja venom (NnV) was deciphered by high resolution mass spectrometry analysis of venom, further fractionated by gel filtration (GF) or RP-HPLC followed by SDS-PAGE and then tandem mass spectrometric analysis of protein bands. The efficacy of commercial polyantivenom (PAV) towards WINnV was assessed by ELISA, immuno-blot, neutralization, and venom-PAV immunoaffinity chromatography studies. Results: Proteomic analysis of WINnV, GF fractions, and SDS-PAGE protein bands of RP-HPLC and GF peaks identified 14, 34, 40, and 54, distinct proteins, respectively, when searched against Elapidae database. The biochemical properties of WINnV correlated well with its proteome composition and pathophysiology of cobra envenomation, including neuroparalysis. This study also highlighted the differences in proteome composition between WINnV and previously reported Eastern India NnV. The tested antivenoms exhibited poor immuno-recognition and neutralization of low molecular mass proteins (<20 kDa), such as three-finger toxins, the major class of protein in WINnV. Conclusion: Improvements in production protocols of antivenoms is the necessity of the hour, supplemented with antibodies raised against the poorly recognized toxins.


Subject(s)
Elapid Venoms/metabolism , Mass Spectrometry/methods , Proteomics/methods , Animals , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Naja naja/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...