Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1594, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383513

ABSTRACT

Measuring the phenotypic effect of treatments on cells through imaging assays is an efficient and powerful way of studying cell biology, and requires computational methods for transforming images into quantitative data. Here, we present an improved strategy for learning representations of treatment effects from high-throughput imaging, following a causal interpretation. We use weakly supervised learning for modeling associations between images and treatments, and show that it encodes both confounding factors and phenotypic features in the learned representation. To facilitate their separation, we constructed a large training dataset with images from five different studies to maximize experimental diversity, following insights from our causal analysis. Training a model with this dataset successfully improves downstream performance, and produces a reusable convolutional network for image-based profiling, which we call Cell Painting CNN. We evaluated our strategy on three publicly available Cell Painting datasets, and observed that the Cell Painting CNN improves performance in downstream analysis up to 30% with respect to classical features, while also being more computationally efficient.


Subject(s)
Neural Networks, Computer
2.
J Microsc ; 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37690102

ABSTRACT

CellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy. Here, we present an upgraded CellProfiler-plugins repository, an example of accessing containerised tools, improved documentation and added citation/reference tools to facilitate the use and contribution of the community.

3.
ArXiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645041

ABSTRACT

CellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy. Here, we present an upgraded CellProfiler-plugins repository, an example of accessing containerized tools, improved documentation, and added citation/reference tools to facilitate the use and contribution of the community.

4.
PLoS Biol ; 21(6): e3002167, 2023 06.
Article in English | MEDLINE | ID: mdl-37368874

ABSTRACT

Technological advancements in biology and microscopy have empowered a transition from bioimaging as an observational method to a quantitative one. However, as biologists are adopting quantitative bioimaging and these experiments become more complex, researchers need additional expertise to carry out this work in a rigorous and reproducible manner. This Essay provides a navigational guide for experimental biologists to aid understanding of quantitative bioimaging from sample preparation through to image acquisition, image analysis, and data interpretation. We discuss the interconnectedness of these steps, and for each, we provide general recommendations, key questions to consider, and links to high-quality open-access resources for further learning. This synthesis of information will empower biologists to plan and execute rigorous quantitative bioimaging experiments efficiently.


Subject(s)
Image Processing, Computer-Assisted , Microscopy
5.
Trends Neurosci ; 44(11): 915-924, 2021 11.
Article in English | MEDLINE | ID: mdl-34565612

ABSTRACT

A pericellular basket is a presynaptic configuration of numerous axonal boutons outlining a target neuron soma and its proximal dendrites. Recent studies show neurochemical diversity of pericellular baskets and suggest that neurotransmitter usage together with the dense, soma-proximal boutons may permit strong input effects on different timescales. Here we review the development, distribution, neurochemical phenotypes, and possible functions of pericellular baskets. As an example, we highlight pericellular baskets formed by projections of certain Pet1/Fev neurons of the serotonergic raphe nuclei. We propose that pericellular baskets represent convergence sites of competition or facilitation between neurotransmitter systems on downstream circuitry, especially in limbic brain regions, where pericellular baskets are widespread. Study of these baskets may enhance our understanding of monoamine regulation of memory, social behavior, and brain oscillations.


Subject(s)
Axons , Neurons , Axons/physiology , Humans , Neurons/physiology , Neurotransmitter Agents , Presynaptic Terminals
6.
Nat Methods ; 18(12): 1463-1476, 2021 12.
Article in English | MEDLINE | ID: mdl-34099930

ABSTRACT

Although fluorescence microscopy is ubiquitous in biomedical research, microscopy methods reporting is inconsistent and perhaps undervalued. We emphasize the importance of appropriate microscopy methods reporting and seek to educate researchers about how microscopy metadata impact data interpretation. We provide comprehensive guidelines and resources to enable accurate reporting for the most common fluorescence light microscopy modalities. We aim to improve microscopy reporting, thus improving the quality, rigor and reproducibility of image-based science.


Subject(s)
Biomedical Research/methods , Biomedical Research/standards , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Microscopy, Fluorescence/standards , Convallaria , Escherichia coli/metabolism , Fluorescent Dyes , Green Fluorescent Proteins/metabolism , Humans , Imaging, Three-Dimensional , Microscopy, Confocal/methods , Reproducibility of Results , Research Design , Signal-To-Noise Ratio , Software
7.
J Neurosci ; 41(12): 2581-2600, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33547164

ABSTRACT

Brainstem median raphe (MR) neurons expressing the serotonergic regulator gene Pet1 send collateralized projections to forebrain regions to modulate affective, memory-related, and circadian behaviors. Some Pet1 neurons express a surprisingly incomplete battery of serotonin pathway genes, with somata lacking transcripts for tryptophan hydroxylase 2 (Tph2) encoding the rate-limiting enzyme for serotonin [5-hydroxytryptamine (5-HT)] synthesis, but abundant for vesicular glutamate transporter type 3 (Vglut3) encoding a synaptic vesicle-associated glutamate transporter. Genetic fate maps show these nonclassical, putatively glutamatergic Pet1 neurons in the MR arise embryonically from the same progenitor cell compartment-hindbrain rhombomere 2 (r2)-as serotonergic TPH2+ MR Pet1 neurons. Well established is the distribution of efferents en masse from r2-derived, Pet1-neurons; unknown is the relationship between these efferent targets and the specific constituent source-neuron subgroups identified as r2-Pet1Tph2-high versus r2-Pet1Vglut3-high Using male and female mice, we found r2-Pet1 axonal boutons segregated anatomically largely by serotonin+ versus VGLUT3+ identity. The former present in the suprachiasmatic nucleus, paraventricular nucleus of the thalamus, and olfactory bulb; the latter are found in the hippocampus, cortex, and septum. Thus r2-Pet1Tph2-high and r2-Pet1Vglut3-high neurons likely regulate distinct brain regions and behaviors. Some r2-Pet1 boutons encased interneuron somata, forming specialized presynaptic "baskets" of VGLUT3+ or VGLUT3+/5-HT+ identity; this suggests that some r2-Pet1Vglut3-high neurons may regulate local networks, perhaps with differential kinetics via glutamate versus serotonin signaling. Fibers from other Pet1 neurons (non-r2-derived) were observed in many of these same baskets, suggesting multifaceted regulation. Collectively, these findings inform brain organization and new circuit nodes for therapeutic considerations.SIGNIFICANCE STATEMENT Our findings match axonal bouton neurochemical identity with distant cell bodies in the brainstem raphe. The results are significant because they suggest that disparate neuronal subsystems derive from Pet1+ precursor cells of the embryonic progenitor compartment rhombomere 2 (r2). Of these r2-Pet1 neuronal subsystems, one appears largely serotonergic, as expected given expression of the serotonergic regulator PET1, and projects to the olfactory bulb, thalamus, and suprachiasmatic nucleus. Another expresses VGLUT3, suggesting principally glutamate transmission, and projects to the hippocampus, septum, and cortex. Some r2-Pet1 boutons-those that are VGLUT3+ or VGLUT3+/5-HT+ co-positive-comprise "baskets" encasing interneurons, suggesting that they control local networks perhaps with differential kinetics via glutamate versus serotonin signaling. Results inform brain organization and circuit nodes for therapeutic consideration.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Brain Chemistry/physiology , Raphe Nuclei/metabolism , Rhombencephalon/metabolism , Serotonin/metabolism , Transcription Factors/metabolism , Amino Acid Transport Systems, Acidic/analysis , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Raphe Nuclei/chemistry , Rhombencephalon/chemistry , Serotonin/analysis , Transcription Factors/analysis
8.
eNeuro ; 7(6)2020.
Article in English | MEDLINE | ID: mdl-33214315

ABSTRACT

Brain networks underlying states of social and sensory alertness are normally adaptive, influenced by serotonin and dopamine (DA), and abnormal in neuropsychiatric disorders, often with sex-specific manifestations. Underlying circuits, cells, and molecules are just beginning to be delineated. Implicated is a subtype of serotonergic neuron denoted Drd2-Pet1, distinguished by expression of the type-2 DA receptor (Drd2) gene, inhibited cell-autonomously by DRD2 agonism in slice, and, when constitutively silenced in male mice, affects levels of defensive and exploratory behaviors (Niederkofler et al., 2016). Unknown has been whether DRD2 signaling in these Pet1 neurons contributes to their capacity for shaping defensive behaviors. To address this, we generated mice in which Drd2 gene sequences were deleted selectively in Pet1 neurons. We found that Drd2Pet1-CKO males, but not females, demonstrated increased winning against sex-matched controls in a social dominance assay. Drd2Pet1-CKO females, but not males, exhibited blunting of the acoustic startle response, a protective, defensive reflex. Indistinguishable from controls were auditory brainstem responses (ABRs), locomotion, cognition, and anxiety-like and depression-like behaviors. Analyzing wild-type Drd2-Pet1 neurons, we found sex-specific differences in the proportional distribution of axonal collaterals, in action potential (AP) duration, and in transcript levels of Gad2, important for GABA synthesis. Drd2Pet1-CKO cells displayed sex-specific differences in the percentage of cells harboring Gad2 transcripts. Our results suggest that DRD2 function in Drd2-Pet1 neurons is required for normal defensive/protective behaviors in a sex-specific manner, which may be influenced by the identified sex-specific molecular and cellular features. Related behaviors in humans too show sex differences, suggesting translational relevance.


Subject(s)
Dorsal Raphe Nucleus , Serotonergic Neurons , Acoustics , Animals , Female , Male , Mice , Reflex, Startle , Serotonin
9.
Elife ; 92020 06 22.
Article in English | MEDLINE | ID: mdl-32568072

ABSTRACT

Among the brainstem raphe nuclei, the dorsal raphe nucleus (DR) contains the greatest number of Pet1-lineage neurons, a predominantly serotonergic group distributed throughout DR subdomains. These neurons collectively regulate diverse physiology and behavior and are often therapeutically targeted to treat affective disorders. Characterizing Pet1 neuron molecular heterogeneity and relating it to anatomy is vital for understanding DR functional organization, with potential to inform therapeutic separability. Here we use high-throughput and DR subdomain-targeted single-cell transcriptomics and intersectional genetic tools to map molecular and anatomical diversity of DR-Pet1 neurons. We describe up to fourteen neuron subtypes, many showing biased cell body distributions across the DR. We further show that P2ry1-Pet1 DR neurons - the most molecularly distinct subtype - possess unique efferent projections and electrophysiological properties. These data complement and extend previous DR characterizations, combining intersectional genetics with multiple transcriptomic modalities to achieve fine-scale molecular and anatomic identification of Pet1 neuron subtypes.


Subject(s)
Dorsal Raphe Nucleus/anatomy & histology , Mice/anatomy & histology , Mice/genetics , Neurons , Transcriptome , Animals , Dorsal Raphe Nucleus/metabolism , Female , Gene Expression Profiling , Male , Mice, Inbred C57BL , Neurons/metabolism , Single-Cell Analysis , Transcription Factors/metabolism
10.
Horm Behav ; 93: 99-108, 2017 07.
Article in English | MEDLINE | ID: mdl-28545898

ABSTRACT

Hormonal pleiotropy-the simultaneous influence of a single hormone on multiple traits-has been hypothesized as an important mechanism underlying personality, and circulating glucocorticoids are central to this idea. A major gap in our understanding is the neural basis for this link. Here we examine the stability and structure of behavioral, endocrine and neuroendocrine traits in a population of songbirds (Parus major). Upon identifying stable and covarying behavioral and endocrine traits, we test the hypothesis that risk-averse personalities exhibit a neuroendocrine stress axis that is systemically potentiated-characterized by stronger glucocorticoid reactivity and weaker negative feedback. We show high among-individual variation and covariation (i.e. personality) in risk-taking behaviors and demonstrate that four aspects of glucocorticoid physiology (baseline, stress response, negative feedback strength and adrenal sensitivity) are also repeatable and covary. Further, we establish that high expression of mineralocorticoid and low expression of glucocorticoid receptor in the brain are linked with systemically elevated plasma glucocorticoid levels and more risk-averse personalities. Our findings support the hypothesis that steroid hormones can exert pleiotropic effects that organize behavioral phenotypes and provide novel evidence that neuroendocrine factors robustly explain a large fraction of endocrine and personality variation.


Subject(s)
Aggression , Hypothalamo-Hypophyseal System/metabolism , Neurosecretory Systems/metabolism , Passeriformes/physiology , Pituitary-Adrenal System/metabolism , Stress, Psychological , Adrenocorticotropic Hormone/blood , Aggression/physiology , Animals , Behavior, Animal/physiology , Brain/metabolism , Corticosterone/blood , Female , Glucocorticoids/metabolism , Male , Passeriformes/metabolism , Phenotype , Receptors, Glucocorticoid/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
11.
Sci Rep ; 7(1): 942, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28432288

ABSTRACT

Zebra finches (Taeniopygia guttata) learn to produce songs in a manner reminiscent of spoken language development in humans. One candidate gene implicated in influencing learning is the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B). Consistent with this idea, NR2B levels are high in the song learning nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium) during juvenile vocal learning, and decreases to low levels in adults after learning is complete and the song becomes more stereotyped. To test for the role of NR2B in generating song plasticity, we manipulated NR2B expression in LMAN of adult male zebra finches by increasing its protein levels to those found in juvenile birds, using a lentivirus containing the full-length coding sequence of the human NR2B subunit. We found that increased NR2B expression in adult LMAN induced increases in song sequence diversity and slower song tempo more similar to juvenile songs, but also increased syllable repetitions similar to stuttering. We did not observe these effects in control birds with overexpression of NR2B outside of LMAN or with the green fluorescent protein (GFP) in LMAN. Our results suggest that low NR2B subunit expression in adult LMAN is important in conserving features of stereotyped adult courtship song.


Subject(s)
Brain/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Vocalization, Animal , Animals , Brain/physiology , Finches , HEK293 Cells , Humans , Male , Receptors, N-Methyl-D-Aspartate/metabolism , Transgenes
12.
PLoS One ; 11(2): e0148516, 2016.
Article in English | MEDLINE | ID: mdl-26867218

ABSTRACT

The glucocorticoid stress response, regulated by the hypothalamic-pituitary-adrenal (HPA) axis, enables individuals to cope with stressors through transcriptional effects in cells expressing the appropriate receptors. The two receptors that bind glucocorticoids-the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR)-are present in a variety of vertebrate tissues, but their expression in the brain is especially important. Neural receptor patterns have the potential to integrate multiple behavioral and physiological traits simultaneously, including self-regulation of glucocorticoid secretion through negative feedback processes. In the present work, we quantified the expression of GR and MR mRNA throughout the brain of a female great tit (Parus major), creating a distribution map encompassing 48 regions. This map, the first of its kind for P. major, demonstrated a widespread but not ubiquitous distribution of both receptor types. In the paraventricular nucleus of the hypothalamus (PVN) and the hippocampus (HP)-the two brain regions that we sampled from a total of 25 birds, we found high GR mRNA expression in the former and, unexpectedly, low MR mRNA in the latter. We examined the covariation of MR and GR levels in these two regions and found a strong, positive relationship between MR in the PVN and MR in the HP and a similar trend for GR across these two regions. This correlation supports the idea that hormone pleiotropy may constrain an individual's behavioral and physiological phenotype. In the female song system, we found moderate GR in hyperstriatum ventrale, pars caudalis (HVC), and moderate MR in robust nucleus of the arcopallium (RA). Understanding intra- and interspecific patterns of glucocorticoid receptor expression can inform us about the behavioral processes (e.g. song learning) that may be sensitive to stress and stimulate future hypotheses concerning the relationships between receptor expression, circulating hormone concentrations and performance traits under selection, including behavior.


Subject(s)
Passeriformes/physiology , Pituitary-Adrenal System/physiology , Receptors, Glucocorticoid/metabolism , Receptors, Mineralocorticoid/metabolism , Animal Communication , Animals , Behavior, Animal , Corticotropin-Releasing Hormone/metabolism , Female , Glucocorticoids/metabolism , Hippocampus/physiology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamus/physiology , In Situ Hybridization , Learning , Paraventricular Hypothalamic Nucleus/metabolism , RNA, Messenger/metabolism , Vocalization, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...