Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Struct Dyn ; 11(1): 014501, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38361662

ABSTRACT

Femtosecond optically excited coherent acoustic phonon modes (CAPs) are investigated in a free-standing van der Waals heterostructure composed of a 20-nm transparent hexagonal boron nitride (hBN) and a 42-nm opaque graphite layer. Employing ultrafast electron diffraction, which allows for the independent evaluation of strain dynamics in the constituent material layers, three different CAP modes are identified within the bilayer stack after the optical excitation of the graphite layer. An analytical model is used to discuss the creation of individual CAP modes. Furthermore, their excitation mechanisms in the heterostructure are inferred from the relative phases of these modes by comparison with a numerical linear-chain model. The results support an ultrafast heat transfer mechanism from graphite to the hBN lattice system, which is important to consider when using this material combination in devices.

2.
Sci Rep ; 13(1): 9250, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37291175

ABSTRACT

In the treatment of most newly discovered solid cancerous tumors, surgery remains the first treatment option. An important factor in the success of these operations is the precise identification of oncological safety margins to ensure the complete removal of the tumor without affecting much of the neighboring healthy tissue. Here we report on the possibility of applying femtosecond Laser-Induced Breakdown Spectroscopy (LIBS) combined with Machine Learning algorithms as an alternative discrimination technique to differentiate cancerous tissue. The emission spectra following the ablation on thin fixed liver and breast postoperative samples were recorded with high spatial resolution; adjacent stained sections served as a reference for tissue identification by classical pathological analysis. In a proof of principle test performed on liver tissue, Artificial Neural Networks and Random Forest algorithms were able to differentiate both healthy and tumor tissue with a very high Classification Accuracy of around 0.95. The ability to identify unknown tissue was performed on breast samples from different patients, also providing a high level of discrimination. Our results show that LIBS with femtosecond lasers is a technique with potential to be used in clinical applications for rapid identification of tissue type in the intraoperative surgical field.


Subject(s)
Algorithms , Lasers , Humans , Spectrum Analysis/methods , Neural Networks, Computer , Machine Learning
3.
Chemphyschem ; 24(12): e202300001, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36951120

ABSTRACT

Temporally delayed, phase-locked coherent pairs of near IR femtosecond laser pulses were employed to study electronic coherences in molecular Nd3+ -complexes at room temperature. Dissolved and solid complexes were studied under a confocal microscope set-up with fluorescence detection. The observed electronic coherence on a few hundred femtoseconds time scale is modulated by additional coherent wave packet dynamics, which we attribute mainly to be vibrational in nature. In future, the complexes may serve as prototypes for possible applications in quantum information technology.


Subject(s)
Quantum Theory , Vibration , Temperature , Electronics
4.
Phys Chem Chem Phys ; 24(44): 27483-27494, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36342315

ABSTRACT

We investigate photoelectron circular dichroism (PECD) with coherent light sources whose pulse durations range from femtoseconds to nanoseconds. To that end, we employed an optical parametric amplifier, an ultraviolet optical pulse shaper, and a nanosecond dye laser, all centered around a wavelength of 380 nm. A multiphoton ionization experiment on the gas-phase chiral prototype fenchone found that PECD measured via the 3s intermediate resonance is about 15% and robust over five orders of magnitude of the pulse duration. PECD remains robust despite ongoing molecular dynamics such as rotation, vibration, and internal conversion. We used the Lindblad equation to model the molecular dynamics. Under the assumption of a cascading internal conversion, from the 3p to the 3s and further to the ground state, we estimated the lifetimes of the internal conversion processes in the 100 fs regime.

5.
Chemphyschem ; 23(24): e202200575, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-35969023

ABSTRACT

Single-photon ionisation of enantiopure methyl p-tolyl sulfoxide by circularly polarised light at 133 nm shows remarkably strong photoelectron circular dichroism (PECD), which has been measured in a velocity-map-imaging spectrometer. Both enantiomers were measured, each showing a PECD of a similar magnitude (ca. 25 %). These experiments were carried out with a tabletop high-harmonic source with a photon energy of 9.3 eV, capable of ionising the electronic ground state of most organic and inorganic molecules. Ab-initio scattering calculations provide a theoretical value of the expected chiral asymmetry parameter, and agree very well with the measured values once orbital mixing via configuration interaction in the cation is taken into account. This study demonstrates a simple photoionisation scheme that can be readily applied to study the time-resolved PECD of photochemical reactions and suggests a pronounced sensitivity of PECD to electronic configuration interaction in the cation.

6.
J Chem Phys ; 156(15): 154304, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35459312

ABSTRACT

A pure rotational spectrum of methyl p-tolyl sulfoxide (MTSO) was studied using chirped-pulse Fourier transform microwave spectroscopy in the frequency range of 18-26 GHz. A single conformer was unambiguously observed in the supersonic jet expansion, which is consistent with the conformational analysis performed using quantum-chemical calculations. Rotational transitions were split into two components of A and E symmetries due to the low-barrier internal rotation of the ring methyl group [V3 = 11.0178(23) cm-1]. The low energy barrier for the methyl top internal rotation implies an electron-withdrawing effect of the group at the opposite side of the phenyl ring, in comparison with other para-substituted toluenes. The effective ground state (r0) geometry was derived using the rotational constants from the parent species and the 34S and eight 13C singly substituted isotopologues. Compared to two other sulfoxides, methyl phenyl sulfoxide and methyl 4-nitrophenyl sulfoxide, the sulfoxide group in MTSO is slightly more twisted with respect to the plane of the phenyl ring, which could be attributed to the moderate electron-donating effect of the p-methyl group. Furthermore, the pyramidal inversion that interconverts the handedness at the sulfur stereogenic center was explored in the electronic ground (S0) and excited (S1) states with nudged elastic band and time-dependent density functional theory methods. It was found that the pyramidal inversion in S1 is easier than in S0, showing that optical excitation to S1 will facilitate an effectively barrier-free inversion.

7.
Phys Chem Chem Phys ; 24(5): 2758-2761, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35044414

ABSTRACT

We report chirality detection of structural isomers in a gas phase mixture using nanosecond photoelectron circular dichroism (PECD). Combining pulsed molecular beams with high-resolution resonance enhanced multi-photon ionization (REMPI) allows specific isolated transitions belonging to distinct components in the mixture to be targeted.

8.
Phys Chem Chem Phys ; 22(14): 7404-7411, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32215414

ABSTRACT

Photoelectron circular dichroism (PECD) is a highly sensitive enantiospecific spectroscopy for studying chiral molecules in the gas phase using either single-photon ionization or multiphoton ionization. In the short pulse limit investigated with femtosecond lasers, resonance-enhanced multiphoton ionization (REMPI) is rather instantaneous and typically occurs simultaneously via more than one vibrational or electronic intermediate state due to limited frequency resolution. In contrast, vibrational resolution in the REMPI spectrum can be achieved using nanosecond lasers. In this work, we follow the high-resolution approach using a tunable narrow-band nanosecond laser to measure REMPI-PECD through distinct vibrational levels in the intermediate 3s and 3p Rydberg states of fenchone. We observe the PECD to be essentially independent of the vibrational level. This behaviour of the chiral sensitivity may pave the way for enantiomer specific molecular identification in multi-component mixtures: one can specifically excite a sharp, vibrationally resolved transition of a distinct molecule to distinguish different chiral species in mixtures.

9.
Chemphyschem ; 20(11): 1416-1419, 2019 06 04.
Article in English | MEDLINE | ID: mdl-30972931

ABSTRACT

Photoelectron circular dichroism (PECD) is a fascinating phenomenon both from a fundamental science aspect but also due to its emerging role as a highly sensitive analytic tool for chiral recognition in the gas phase. PECD has been studied with single-photon as well as multi-photon ionization. The latter has been investigated in the short pulse limit with femtosecond laser pulses, where ionization can be thought of as an instantaneous process. In this contribution, we demonstrate that multi-photon PECD still can be observed when using an ultra-violet nanosecond pulse to ionize chiral showcase fenchone molecules. Compared to femtosecond ionization, the magnitude of PECD is similar, but the lifetime of intermediate molecular states imprints itself in the photoelectron spectra. Being able to use an industrial nanosecond laser to investigate PECD furthermore reduces the technical requirements to apply PECD in analytical chemistry.

10.
J Chem Phys ; 147(1): 013926, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28688398

ABSTRACT

The intermediate state dependence of photoelectron circular dichroism (PECD) in resonance-enhanced multi-photon ionization of fenchone in the gas phase is experimentally studied. By scanning the excitation wavelength from 359 to 431 nm, we simultaneously excite up to three electronically distinct resonances. In the PECD experiment performed with a broadband femtosecond laser, their respective contributions to the photoelectron spectrum can be resolved. High-resolution spectroscopy allows us to identify two of the resonances as belonging to the B- and C-bands, which involve excitation to states with 3s and 3p Rydberg character, respectively. We observe a sign change in the PECD signal, depending on which electronic state is used as an intermediate, and are able to identify two differently behaving contributions within the C-band. Scanning the laser wavelength reveals a decrease of PECD magnitude with increasing photoelectron energy for the 3s state. Combining the results of high-resolution spectroscopy and femtosecond experiment, the adiabatic ionization potential of fenchone is determined to be IPaFen=(8.49±0.06) eV.

11.
Ultramicroscopy ; 166: 9-15, 2016 07.
Article in English | MEDLINE | ID: mdl-27107328

ABSTRACT

The combination of various 2D layered materials in multilayer heterostructures arises great interest in the current science. Due to the large variety of electronic properties of the group of 2D layered materials the combination opens a new pathway towards ultrasmall electronic devices. In this contribution we present a full mathematical description of multilayer heterostructure samples and their diffraction patterns including a proposal of a consistent assignment of the superstructure diffraction spots. A 27nm thick MoS2-graphite heterostructure was produced and fully analysed with the methods presented in this paper.

12.
Chemphyschem ; 17(8): 1119-22, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-26836316

ABSTRACT

Photoelectron circular dichroism (PECD) is experimentally investigated with chiral specimens with varying amounts of enantiomeric excess (ee). As a prototype, we measure and analyze the photoelectron angular distribution from randomly oriented fenchone molecules in the gas phase that result from ionization with circularly polarized femtosecond laser pulses. The quantification of these measurements shows a linear dependence with respect to the ee values. In addition, differences in the ee values (denoted as detection limit) of below one percent can be distinguished for nearly enantiopure samples, as well as for almost racemates. In combination with the use of a reference, the assignment of absolute ee values is possible. The present measurement time is a few minutes, but this could be reduced. This table-top laser-based approach should facilitate widespread implementation in chiral analysis.

13.
Nat Commun ; 6: 7262, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26105804

ABSTRACT

Laser-induced electron diffraction is an evolving tabletop method that aims to image ultrafast structural changes in gas-phase polyatomic molecules with sub-Ångström spatial and femtosecond temporal resolutions. Here we demonstrate the retrieval of multiple bond lengths from a polyatomic molecule by simultaneously measuring the C-C and C-H bond lengths in aligned acetylene. Our approach takes the method beyond the hitherto achieved imaging of simple diatomic molecules and is based on the combination of a 160 kHz mid-infrared few-cycle laser source with full three-dimensional electron-ion coincidence detection. Our technique provides an accessible and robust route towards imaging ultrafast processes in complex gas-phase molecules with atto- to femto-second temporal resolution.

14.
Phys Rev Lett ; 110(21): 213002, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23745865

ABSTRACT

Dissociative single ionization of H(2) induced by extreme ultraviolet photons from an attosecond pulse train has been studied in a kinematically complete experiment. Depending on the electron kinetic energy and the alignment of the molecule with respect to the laser polarization axis, we observe pronounced asymmetries in the relative emission directions of the photoelectron and the H(+) ion. The energy-dependent asymmetry pattern is explained by a semiclassical model and further validated by fully quantum mechanical calculations, both in very good agreement with the experiment.

15.
J Chem Phys ; 138(13): 134307, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23574227

ABSTRACT

We present in this paper an (e, 2e + ion) investigation of the dissociative ionization of methane by 54 eV electron impact employing the advanced reaction microscope. By measuring two electrons and the ion in the final state in triple coincidence, the species of the ions are identified and the energies deposited into the target are determined. The species and the kinetic energies of the fragmented ion show strong dependence on the intermediate states of the parent ion. Possible decay pathways for the production of different species of ions are analyzed.

16.
Phys Rev Lett ; 110(15): 153202, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-25167263

ABSTRACT

As a fundamental test for state-of-the-art theoretical approaches, we have studied the single ionization (2p) of neon at a projectile energy of 100 eV. The experimental data were acquired using an advanced reaction microscope that benefits from high efficiency and a large solid-angle acceptance of almost 4π. We put special emphasis on the ability to measure internormalized triple-differential cross sections over a large part of the phase space. The data are compared to predictions from a second-order hybrid distorted-wave plus R-matrix model and a fully nonperturbative B-spline R-matrix (BSR) with pseudostates approach. For a target of this complexity and the low-energy regime, unprecedented agreement between experiment and the BSR model is found. This represents a significant step forward in the investigation of complex targets.

17.
Nat Commun ; 3: 813, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22569361

ABSTRACT

Despite their broad implications for phenomena such as molecular bonding or chemical reactions, our knowledge of multi-electron dynamics is limited and their theoretical modelling remains a most difficult task. From the experimental side, it is highly desirable to study the dynamical evolution and interaction of the electrons over the relevant timescales, which extend into the attosecond regime. Here we use near-single-cycle laser pulses with well-defined electric field evolution to confine the double ionization of argon atoms to a single laser cycle. The measured two-electron momentum spectra, which substantially differ from spectra recorded in all previous experiments using longer pulses, allow us to trace the correlated emission of the two electrons on sub-femtosecond timescales. The experimental results, which are discussed in terms of a semiclassical model, provide strong constraints for the development of theories and lead us to revise common assumptions about the mechanism that governs double ionization.

18.
Phys Rev Lett ; 108(9): 098302, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22463673

ABSTRACT

Time-resolved measurements of quantum dynamics are based on the availability of controlled events that are shorter than the typical evolution time scale of the processes to be observed. Here we introduce the concept of noise-enhanced pump-probe spectroscopy, allowing the measurement of dynamics significantly shorter than the average pulse duration by exploiting randomly varying, partially coherent light fields consisting of bunched colored noise. These fields are shown to be superior by more than a factor of 10 to frequency-stabilized fields, with important implications for time-resolved experiments at x-ray free-electron lasers and, in general, for measurements at the frontiers of temporal resolution (e.g., attosecond spectroscopy). As an example application, the concept is used to explain the recent experimental observation of vibrational wave-packet motion in D(2)(+) on time scales shorter than the average pulse duration.

19.
Phys Rev Lett ; 107(22): 223201, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-22182026

ABSTRACT

A kinematically complete experiment for 100 eV electron-impact ionization of small argon clusters was realized. The triple coincidence detection of both outgoing electrons and the residual ion allows the discrimination between single ionization of atoms, dimers and non-mass-selected small clusters as well as between ionization and excitation within the same cluster. Comparison of fully and partly differential ionization cross sections for clusters with those of atoms reveal clear signatures of multiple-scattering reactions. For ionization with excitation, an almost isotropic electron emission pattern is observed.

20.
J Chem Phys ; 133(4): 044302, 2010 Jul 28.
Article in English | MEDLINE | ID: mdl-20687645

ABSTRACT

We discuss the ionization of aligned hydrogen molecules into their ionic ground state by 200 eV electrons. Using a reaction microscope, the complete electron scattering kinematics is imaged over a large solid angle. Simultaneously, the molecular alignment is derived from postcollision dissociation of the residual ion. It is found that the ionization cross section is maximized for small angles between the internuclear axis and the momentum transfer. Fivefold differential cross sections (5DCSs) reveal subtle differences in the scattering process for the distinct alignments. We compare our observations with theoretical 5DCSs obtained with an adapted molecular three-body distorted wave model that reproduces most of the results, although discrepancies remain.

SELECTION OF CITATIONS
SEARCH DETAIL
...