Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 356(3): 635-44, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26740668

ABSTRACT

Prostaglandin (PG) E2 plays a critical role in eliciting inflammation. Nonsteroidal anti-inflammatory drugs and selective inhibitors of cyclooxygenase, which block PGE2 production, have been used as key agents in treating inflammation and pain associated with arthritis and other conditions. However, these agents have significant side effects such as gastrointestinal bleeding and myocardial infarction, since they also block the production of prostanoids that are critical for other normal physiologic functions. Microsomal prostaglandin E2 synthase-1 is a membrane-bound terminal enzyme in the prostanoid pathway, which acts downstream of cyclooxygenase 2 and is responsible for PGE2 production during inflammation. Thus, inhibition of this enzyme would be expected to block PGE2 production without inhibiting other prostanoids and would provide analgesic efficacy without the side effects. In this report, we describe novel microsomal prostaglandin E2 synthase-1 inhibitors that are potent in blocking PGE2 production and are efficacious in a guinea pig monoiodoacetate model of arthralgia. These molecules may be useful in treating the signs and symptoms associated with arthritis.


Subject(s)
Analgesics/chemistry , Analgesics/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Intramolecular Oxidoreductases/antagonists & inhibitors , Microsomes/drug effects , Phenanthrenes/chemistry , Phenanthrenes/pharmacology , Analgesia/methods , Animals , Celecoxib/chemistry , Celecoxib/pharmacology , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Guinea Pigs , Humans , Intramolecular Oxidoreductases/metabolism , Male , Microsomes/enzymology , Pain Measurement/drug effects , Pain Measurement/methods , Prostaglandin-E Synthases , Rats
2.
J Med Chem ; 59(1): 194-205, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26653180

ABSTRACT

As part of a program aimed at the discovery of antinociceptive therapy for inflammatory conditions, a screening hit was found to inhibit microsomal prostaglandin E synthase-1 (mPGES-1) with an IC50 of 17.4 µM. Structural information was used to improve enzyme potency by over 1000-fold. Addition of an appropriate substituent alleviated time-dependent cytochrome P450 3A4 (CYP3A4) inhibition. Further structure-activity relationship (SAR) studies led to 8, which had desirable potency (IC50 = 12 nM in an ex vivo human whole blood (HWB) assay) and absorption, distribution, metabolism, and excretion (ADME) properties. Studies on the formulation of 8 identified 8·H3PO4 as suitable for clinical development. Omission of a lipophilic portion of the compound led to 26, a readily orally bioavailable inhibitor with potency in HWB comparable to celecoxib. Furthermore, 26 was selective for mPGES-1 inhibition versus other mechanisms in the prostanoid pathway. These factors led to the selection of 26 as a second clinical candidate.


Subject(s)
Analgesics/chemical synthesis , Analgesics/pharmacology , Cyclooxygenase Inhibitors/chemical synthesis , Cyclooxygenase Inhibitors/pharmacology , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Intramolecular Oxidoreductases/antagonists & inhibitors , Microsomes/enzymology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biological Availability , Celecoxib/pharmacology , Cyclooxygenase Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Dogs , Drug Discovery , Humans , Microsomes/drug effects , Models, Molecular , Prostaglandin-E Synthases , Rats , Structure-Activity Relationship
3.
J Pharmacol Exp Ther ; 312(1): 127-33, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15356215

ABSTRACT

Carnitine palmitoyltransferase 1beta (CPT-1beta) is a key regulator of the beta oxidation of long-chain fatty acids in skeletal muscle and therefore a potential therapeutic target for diseases associated with defects in lipid metabolism such as obesity and type 2 diabetes. C75 [4-methylene-2-octyl-5-oxo-tetrahydro-furan-3-carboxylic acid] is an alpha-methylene-butyrolactone that has been characterized as both an inhibitor of fatty acid synthase and more recently, an activator of CPT-1 (Thupari et al., 2002). Using human CPT-1beta expressed in the yeast Pichia pastoris, we demonstrate that C75 can activate the skeletal muscle isoform of CPT-1 and overcome inactivation of the enzyme by malonyl CoA, an important physiological repressor of CPT-1, and the malonyl CoA mimetic Ro25-0187 [{5-[2-(naphthalen-2-yloxy)-ethoxy]-thiophen-2-yl}-oxo-acetic acid]. We also show that C75 can activate CPT-1 in intact hepatocytes to levels similar to those achieved with inhibition of acetyl-CoA carboxylase, the enzyme that produces malonyl CoA. Finally, we demonstrate that concentrations of C75 sufficient for activation of CPT-1 do not displace bound malonyl CoA. We conclude that CPT-1 is an activator of human CPT-1beta and other CPT-1 isoforms but that it does not activate CPT-1 through antagonism of malonyl CoA binding.


Subject(s)
4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Carnitine O-Palmitoyltransferase/metabolism , Malonyl Coenzyme A/metabolism , Mitochondria, Heart/drug effects , Animals , Enzyme Activation/drug effects , Humans , Mitochondria, Heart/enzymology , Rats , Recombinant Proteins/metabolism , Tumor Cells, Cultured , Yeasts/genetics
4.
Bioorg Med Chem Lett ; 13(19): 3237-42, 2003 Oct 06.
Article in English | MEDLINE | ID: mdl-12951100

ABSTRACT

Acetyl CoA carboxylase (ACC) catalyzes the carboxylation of acetyl CoA to form malonyl CoA. In skeletal muscle and heart, malonyl CoA functions to regulate lipid oxidation by inhibition of carnitine palmitoyltransferase-1, an enzyme which controls the entry of long chain fatty acids into mitochondria. We have found that several members of the cyclohexanedione class of herbicides are competitive inhibitors of rat heart ACC. These compounds constitute valuable reagents for drug development and the study of ACCbeta, a validated anti-obesity target.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Cyclohexanes/pharmacology , Enzyme Inhibitors/pharmacology , Herbicides/pharmacology , Myocardium/enzymology , Acetyl-CoA Carboxylase/metabolism , Animals , Cyclohexanes/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Herbicides/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...