Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(7): 6400-6409, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36942968

ABSTRACT

Electrically manipulating magnetic moments by spin-orbit torque (SOT) has great potential applications in magnetic memories and logic devices. Although there have been rich SOT studies on magnetic heterostructures, low interfacial thermal stability and high switching current density still remain an issue. Here, highly textured, polycrystalline Heusler alloy MnxPtyGe (MPG) films with various thicknesses are directly deposited onto thermally oxidized silicon wafers. The perpendicular magnetization of the MPG single layer can be reversibly switched by electrical current pulses with a magnitude as low as 4.1 × 1010Am-2, as evidenced by both the electrical transport and the magnetic optical measurements. The switching is shown to arise from inversion symmetry breaking due to the vertical composition gradient of the films after sample annealing. The SOT effective fields of the samples are analyzed systematically. It is found that the SOT efficiency increases with the film thickness, suggesting a robust bulk-like behavior in the single magnetic layer. Furthermore, a memristive characteristic has been observed due to a multidomain switching property in the single-layer MPG device. Additionally, deterministic field-free switching of magnetization is observed when the electric current flows orthogonal to the direction of the in-plane compositional gradient due to the in-plane symmetry breaking. This work proves that the MPG is a good candidate to be utilized in high-density and efficient magnetoresistive random access memory devices and other spintronic applications.

2.
Chemistry ; 28(31): e202200687, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35319794

ABSTRACT

The incorporation of organic radicals into coordination polymers was considered as a promising strategy to promote metal-ligand exchange interactions, but there are only a very limited number of stable organic radical-based ligands that can serve well such a purpose. Herein, we report two new tris(2,4,6-trichlorophenyl)methyl (TTM) radical-based ligands L1 and L2 with two and three imidazole substituents, respectively. The imidazole unit serves as a coordination site and it can also stabilize the TTM radical by intramolecular donor-acceptor interaction. Coordination of L1 and L2 with cobalt(II) ions gave the corresponding one- (CoCP-1) and two-dimensional (CoCP-2) coordination polymers, the structures of which were confirmed by X-ray crystallographic analysis. Magnetic measurements and theoretical calculations suggest antiferromagnetic coupling between the paramagnetic cobalt(II) ions and the radical ligands. Our study provides a rational design for stable organic radical-based ligands and further demonstrated the feasibility of a metal-radical approach toward magnetic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...