Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 56(17): 5086-5091, 2017 Jun 10.
Article in English | MEDLINE | ID: mdl-29047660

ABSTRACT

Electrically pumped heterogeneously integrated III-V/SiO2 semiconductor on-chip lasers with different types of etched facet reflectors are designed and fabricated and their lasing performances are characterized and compared. The III-V quantum-well-based epitaxial layers are bonded on silica-on-silicon substrates and fabricated to form Fabry-Perot lasers with dry-etched rear facets. Three types of reflectors are demonstrated, which are etched facets terminated by air, benzocyclobutene, and metal with a thin layer of SiO2 insulator in-between. The laser devices are characterized and compared, including lasing threshold, external quantum efficiency, and output power, and show the impact of different types of etched facet reflectors on lasing performance.

2.
Opt Lett ; 40(7): 1378-81, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25831337

ABSTRACT

A new heterogeneously integrated III-V/Si laser structure is reported in this report that consists of a III-V ridge waveguide gain section on silicon, III-V/Si optical vertical interconnect accesses (VIAs), and silicon-on-insulator (SOI) nanophotonic waveguide sections. The III-V semiconductor layers are introduced on top of the 300-nm-thick SOI layer through low temperature, plasma-assisted direct wafer-bonding and etched to form a III-V ridge waveguide on silicon as the gain section. The optical VIA is formed by tapering the III-V and the beneath SOI in the same direction with a length of 50 µm for efficient coupling of light down to the 600 nm wide silicon nanophotonic waveguide or vice versa. Fabrication details and specification characterizations of this heterogeneous III-V/Si Fabry-Perot (FP) laser are given. The fabricated FP laser shows a continuous-wave lasing with a threshold current of 65 mA at room temperature, and the slope efficiency from single facet is 144 mW/A. The maximal single facet emitting power is about 4.5 mW at a current of 100 mA, and the side-mode suppression ratio is ∼30 dB. This new heterogeneously integrated III-V/Si laser structure demonstrated enables more complex laser configuration with a sub-system on-chip for various applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...