Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 61(16): e202114896, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35068039

ABSTRACT

The inverse vulcanization produces high sulfur content polymers from alkenes and elemental sulfur. Control over properties such as the molar mass or the solubility of polymers is not well established, and existing strategies lack predictability or require large variations of the composition. Systematic design principles are sought to allow for a targeted design of materials. Herein, we report on the inverse vulcanization of norbornenylsilanes (NBS), with a different number of hydrolysable groups at the silicon atom. Inverse vulcanization of mixtures of NBS followed by polycondensation yielded soluble high sulfur content copolymers (50 wt % S) with controllable weight average molar mass (MW ), polydispersity (D), glass transition temperature (TG ), or zero-shear viscosity (η0 ). Polycondensation was conducted in the melt with HCl as a catalyst, abolishing the need for a solvent. Purification by precipitation afforded polymers with a greatly reduced amount of low molar mass species.

2.
Macromol Rapid Commun ; 42(15): e2100193, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33945179

ABSTRACT

The preparation of sequence-defined macromolecules using cyclic sulfamidates on solid-phase is outlined. The challenges surrounding an AB+CD approach are described with focus on understanding the formation of ring-opened side products when using amide coupling reagents. To avoid undesired side product formation, a strategy of iterative ring-openings of cyclic sulfamidates on solid-phase is explored. Ring-opening on primary and secondary amines is successfully reported, generating both linear and branched chain growth. However, attempts to selectively cleave N-sulfate bearing sp3 -hybridized groups cannot be demonstrated, limiting the overall building block scope for this methodology. Consequently, the active ring-opening of cyclic sulfamidates on amine-functionalized oligo(amidoamine) backbones is successfully applied to produce sequence-defined, N-sulfated macromolecules.


Subject(s)
Amides , Macromolecular Substances
SELECTION OF CITATIONS
SEARCH DETAIL
...