Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35056776

ABSTRACT

New target molecules, namely, 2-phenylamino-4-phenoxyquinoline derivatives, were designed using a molecular hybridization approach, which was accomplished by fusing the pharmacophore structures of three currently available drugs: nevirapine, efavirenz, and rilpivirine. The discovery of disubstituted quinoline indicated that the pyridinylamino substituent at the 2-position of quinoline plays an important role in its inhibitory activity against HIV-1 RT. The highly potent HIV-1 RT inhibitors, namely, 4-(2',6'-dimethyl-4'-formylphenoxy)-2-(5″-cyanopyridin-2″ylamino)quinoline (6b) and 4-(2',6'-dimethyl-4'-cyanophenoxy)-2-(5″-cyanopyridin-2″ylamino)quinoline (6d) exhibited half-maximal inhibitory concentrations (IC50) of 1.93 and 1.22 µM, respectively, which are similar to that of nevirapine (IC50 = 1.05 µM). The molecular docking results for these two compounds showed that both compounds interacted with Lys101, His235, and Pro236 residues through hydrogen bonding and interacted with Tyr188, Trp229, and Tyr318 residues through π-π stacking in HIV-1 RT. Interestingly, 6b was highly cytotoxic against MOLT-3 (acute lymphoblastic leukemia), HeLA (cervical carcinoma), and HL-60 (promyeloblast) cells with IC50 values of 12.7 ± 1.1, 25.7 ± 0.8, and 20.5 ± 2.1 µM, respectively. However, 6b and 6d had very low and no cytotoxicity, respectively, to-ward normal embryonic lung (MRC-5) cells. Therefore, the synthesis and biological evaluation of 2-phenylamino-4-phenoxyquinoline derivatives can serve as an excellent basis for the development of highly effective anti-HIV-1 and anticancer agents in the near future.


Subject(s)
HIV Reverse Transcriptase/chemistry , Models, Molecular , Quinolines/chemistry , Reverse Transcriptase Inhibitors/chemistry , Binding Sites , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/drug effects , Humans , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Quinolines/chemical synthesis , Quinolines/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacology , Structure-Activity Relationship
2.
Drug Res (Stuttg) ; 69(12): 671-682, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31698495

ABSTRACT

In this study, amino-oxy-diarylquinolines were designed using structure-guided molecular hybridization strategy and fusing of the pharmacophore templates of nevirapine (NVP), efavirenz (EFV), etravirine (ETV, TMC125) and rilpivirine (RPV, TMC278). The anti-HIV-1 reverse transcriptase (RT) activity was evaluated using standard ELISA method, and the cytotoxic activity was performed using MTT and XTT assays. The primary bioassay results indicated that 2-amino-4-oxy-diarylquinolines possess moderate inhibitory properties against HIV-1 RT. Molecular docking results showed that 2-amino-4-oxy-diarylquinolines 8(A-D): interacted with the Lys101 and His235 residue though hydrogen bonding and interacted with Tyr318 residue though π-π stacking in HIV-1 RT. Furthermore, 8A: and 8D: were the most potent anti-HIV agents among the designed and synthesized compounds, and their inhibition rates were 34.0% and 39.7% at 1 µM concentration. Interestingly, 8A: was highly cytotoxicity against MOLT-3 (acute lymphoblastic leukemia), with an IC50 of 4.63±0.62 µg/mL, which was similar with that in EFV and TMC278 (IC50 7.76±0.37 and 1.57±0.20 µg/ml, respectively). Therefore, these analogs of the synthesized compounds can serve as excellent bases for the development of new anti-HIV-1 agents in the near future.


Subject(s)
Diarylquinolines/chemistry , Diarylquinolines/pharmacology , HIV Reverse Transcriptase/metabolism , HIV-1/drug effects , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Alkynes , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Benzoxazines/chemistry , Benzoxazines/pharmacology , Cell Line, Tumor , Cyclopropanes , HIV Infections/drug therapy , HIV Infections/metabolism , Humans , Molecular Docking Simulation , Nevirapine/chemistry , Nevirapine/pharmacology , Nitriles , Pyridazines/chemistry , Pyridazines/pharmacology , Pyrimidines , Rilpivirine/chemistry , Rilpivirine/pharmacology
3.
Chem Asian J ; 10(4): 925-37, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25702829

ABSTRACT

Despite the therapeutic potential of marine-derived lamellarin natural products, their preclinical development has been hampered by their lipophilic nature, causing very poor aqueous solubility. In order to develop more drug-like analogs, their structure was streamlined in this study from both the cytotoxic activity and lipophilicity standpoints. First, a modified total synthetic route was successfully devised to construct a library of 59 systematically designed lamellarin analogs, which were then subjected to cytotoxicity and log P determinations. Along with the 25 first-generation lamellarins previously synthesized in our laboratory, the structure-activity and structure-lipophilicity relationships were extensively evaluated. Our results clearly indicated the additional structural requirements around the lamellarin skeleton which, when combined with those reported previously, can provide invaluable guidance for further modifications to increase the aqueous solubility of these compounds.


Subject(s)
Alkaloids/chemical synthesis , Alkaloids/pharmacology , Alkaloids/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Molecular Structure , Structure-Activity Relationship
4.
Biochem Biophys Res Commun ; 372(1): 67-72, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18471994

ABSTRACT

Dengue virus nonstructural protein 1 (NS1) is a key glycoprotein involved in the production of infectious virus and the pathogenesis of dengue diseases. Very little is known how NS1 interacts with host cellular proteins and functions in dengue virus-infected cells. This study aimed at identifying NS1-interacting host cellular proteins in dengue virus-infected cells by employing co-immunoprecipitation, two-dimensional gel electrophoresis, and mass spectrometry. Using lysates of dengue virus-infected human embryonic kidney cells (HEK 293T), immunoprecipitation with an anti-NS1 monoclonal antibody revealed eight isoforms of dengue virus NS1 and a 40-kDa protein, which was subsequently identified by quadrupole time-of-flight tandem mass spectrometry (Q-TOF MS/MS) as human heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Further investigation by co-immunoprecipitation and co-localization confirmed the association of hnRNP C1/C2 and dengue virus NS1 proteins in dengue virus-infected cells. Their interaction may have implications in virus replication and/or cellular responses favorable to survival of the virus in host cells.


Subject(s)
Dengue Virus/physiology , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Viral Nonstructural Proteins/metabolism , Virus Replication , Antibodies, Monoclonal/immunology , Cell Line , Cell Nucleus/metabolism , Cell Nucleus/virology , Cytoplasm/metabolism , Cytoplasm/virology , Heterogeneous-Nuclear Ribonucleoprotein Group C/analysis , Humans , Immunoprecipitation , Protein Isoforms/analysis , Protein Isoforms/metabolism , Proteomics , Tandem Mass Spectrometry , Viral Nonstructural Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...