Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Radiol ; 176: 111483, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705051

ABSTRACT

BACKGROUND: The pathological mechanisms following aneurysmal subarachnoid hemorrhage (SAH) are poorly understood. Limited clinical evidence exists on the association between cerebrospinal fluid (CSF) volume and the risk of delayed cerebral ischemia (DCI) or cerebral vasospasm (CV). In this study, we raised the hypothesis that the amount of CSF or its ratio to hemorrhage blood volume, as determined from non-contrast Computed Tomography (NCCT) images taken on admission, could be a significant predictor for CV and DCI. METHODS: The pilot study included a retrospective analysis of NCCT scans of 49 SAH patients taken shortly after an aneurysm rupture (33 males, 16 females, mean age 56.4 ± 15 years). The SynthStrip and Slicer3D software tools were used to extract radiological factors - CSF, brain, and hemorrhage volumes from the NCCT images. The "pure" CSF volume (VCSF) was estimated in the range of [-15, 15] Hounsfield units (HU). RESULTS: VCSF was negatively associated with the risk of CV occurrence (p = 0.0049) and DCI (p = 0.0069), but was not associated with patients' outcomes. The hemorrhage volume (VSAH) was positively associated with an unfavorable outcome (p = 0.0032) but was not associated with CV/DCI. The ratio VSAH/VCSF was positively associated with, both, DCI (p = 0.031) and unfavorable outcome (p = 0.002). The CSF volume normalized by the brain volume showed the highest characteristics for DCI prediction (AUC = 0.791, sensitivity = 0.80, specificity = 0.812) and CV prediction (AUC = 0.769, sensitivity = 0.812, specificity = 0.70). CONCLUSION: It was demonstrated that "pure" CSF volume retrieved from the initial NCCT images of SAH patients (including CV, Non-CV, DCI, Non-DCI groups) is a more significant predictor of DCI and CV compared to other routinely used radiological biomarkers. VCSF could be used to predict clinical course as well as to personalize the management of SAH patients. Larger multicenter clinical trials should be performed to test the added value of the proposed methodology.


Subject(s)
Subarachnoid Hemorrhage , Tomography, X-Ray Computed , Humans , Male , Female , Subarachnoid Hemorrhage/diagnostic imaging , Subarachnoid Hemorrhage/cerebrospinal fluid , Subarachnoid Hemorrhage/complications , Middle Aged , Pilot Projects , Retrospective Studies , Cerebrospinal Fluid/diagnostic imaging , Vasospasm, Intracranial/diagnostic imaging , Vasospasm, Intracranial/cerebrospinal fluid , Vasospasm, Intracranial/etiology , Brain Ischemia/diagnostic imaging , Brain Ischemia/cerebrospinal fluid , Brain Ischemia/complications , Aged , Aneurysm, Ruptured/diagnostic imaging , Aneurysm, Ruptured/complications , Aneurysm, Ruptured/cerebrospinal fluid , Predictive Value of Tests , Adult , Sensitivity and Specificity
2.
Front Neurosci ; 17: 1200630, 2023.
Article in English | MEDLINE | ID: mdl-37469843

ABSTRACT

Introduction: Intracranial hemorrhage detection in 3D Computed Tomography (CT) brain images has gained more attention in the research community. The major issue to deal with the 3D CT brain images is scarce and hard to obtain the labelled data with better recognition results. Methods: To overcome the aforementioned problem, a new model has been implemented in this research manuscript. After acquiring the images from the Radiological Society of North America (RSNA) 2019 database, the region of interest (RoI) was segmented by employing Otsu's thresholding method. Then, feature extraction was performed utilizing Tamura features: directionality, contrast, coarseness, and Gradient Local Ternary Pattern (GLTP) descriptors to extract vectors from the segmented RoI regions. The extracted vectors were dimensionally reduced by proposing a modified genetic algorithm, where the infinite feature selection technique was incorporated with the conventional genetic algorithm to further reduce the redundancy within the regularized vectors. The selected optimal vectors were finally fed to the Bi-directional Long Short Term Memory (Bi-LSTM) network to classify intracranial hemorrhage sub-types, such as subdural, intraparenchymal, subarachnoid, epidural, and intraventricular. Results: The experimental investigation demonstrated that the Bi-LSTM based modified genetic algorithm obtained 99.40% sensitivity, 99.80% accuracy, and 99.48% specificity, which are higher compared to the existing machine learning models: Naïve Bayes, Random Forest, Support Vector Machine (SVM), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) network.

3.
Biomed Res Int ; 2022: 5416726, 2022.
Article in English | MEDLINE | ID: mdl-35111845

ABSTRACT

Subarachnoid hemorrhage (SAH) is one of the major health issues known to society and has a higher mortality rate. The clinical factors with computed tomography (CT), magnetic resonance image (MRI), and electroencephalography (EEG) data were used to evaluate the performance of the developed method. In this paper, various methods such as statistical analysis, logistic regression, machine learning, and deep learning methods were used in the prediction and detection of SAH which are reviewed. The advantages and limitations of SAH prediction and risk assessment methods are also being reviewed. Most of the existing methods were evaluated on the collected dataset for the SAH prediction. In some researches, deep learning methods were applied, which resulted in higher performance in the prediction process. EEG data were applied in the existing methods for the prediction process, and these methods demonstrated higher performance. However, the existing methods have the limitations of overfitting problems, imbalance data problems, and lower efficiency in feature analysis. The artificial neural network (ANN) and support vector machine (SVM) methods have been applied for the prediction process, and considerably higher performance is achieved by using this method.


Subject(s)
Risk Assessment , Subarachnoid Hemorrhage/diagnostic imaging , Electroencephalography , Humans , Magnetic Resonance Imaging , Predictive Value of Tests , Tomography, X-Ray Computed
4.
Sensors (Basel) ; 21(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34960588

ABSTRACT

In recent trends, wireless sensor networks (WSNs) have become popular because of their cost, simple structure, reliability, and developments in the communication field. The Internet of Things (IoT) refers to the interconnection of everyday objects and sharing of information through the Internet. Congestion in networks leads to transmission delays and packet loss and causes wastage of time and energy on recovery. The routing protocols are adaptive to the congestion status of the network, which can greatly improve the network performance. In this research, collision-aware routing using the multi-objective seagull optimization algorithm (CAR-MOSOA) is designed to meet the efficiency of a scalable WSN. The proposed protocol exploits the clustering process to choose cluster heads to transfer the data from source to endpoint, thus forming a scalable network, and improves the performance of the CAR-MOSOA protocol. The proposed CAR-MOSOA is simulated and examined using the NS-2.34 simulator due to its modularity and inexpensiveness. The results of the CAR-MOSOA are comprehensively investigated with existing algorithms such as fully distributed energy-aware multi-level (FDEAM) routing, energy-efficient optimal multi-path routing protocol (EOMR), tunicate swarm grey wolf optimization (TSGWO), and CoAP simple congestion control/advanced (CoCoA). The simulation results of the proposed CAR-MOSOA for 400 nodes are as follows: energy consumption, 33 J; end-to-end delay, 29 s; packet delivery ratio, 95%; and network lifetime, 973 s, which are improved compared to the FDEAM, EOMR, TSGWO, and CoCoA.

SELECTION OF CITATIONS
SEARCH DETAIL
...